
TABLE DES MATIÈRES

Table des matières i

Table des figures ii

List of Listings iii
Résumé . iv
Abstract . v
Glossaire . vi

Introduction 1

1 CONCEPTS FONDAMENTAUX DES SYSTÈMES MULTI-AGENTS 4
1.1 Introduction aux Systèmes Multi-Agents (SMA) 4

1.1.1 Définition et caractéristiques d’un SMA 4
1.1.2 Notion d’agent : autonomie, réactivité, pro-activité, socialité . . 5
1.1.3 Architecture des SMA : agents, environnement, interactions . . . 6
1.1.4 Domaines d’application des SMA 7

1.2 Communication entre Agents . 8
1.2.1 Langage de Communication entre Agents (ACL) 8
1.2.2 Performatives FIPA-ACL (INFORM, REQUEST, QUERY, PRO-

POSE, etc.) . 8
1.2.3 Protocoles d’interaction . 9
1.2.4 Ontologies et représentation des connaissances 10

1.3 Présentation de Google ADK (Agent Development Kit) 11
1.3.1 Qu’est-ce que Google ADK ? . 11
1.3.2 Architecture et composants principaux 12
1.3.3 Modèles d’agents dans ADK . 13
1.3.4 Intégration avec les LLM Exemple : Gemini 14

1.4 Étude Comparative : Google ADK vs JADE 15
1.4.1 Tableau comparatif des caractéristiques 15
1.4.2 Avantages et inconvénients de chaque framework 15
1.4.3 Cas d’usage appropriés . 17
1.4.4 Migration de concepts JADE vers ADK 17

i

ii

2 PRÉSENTATION DU PROJET AGRICULTURE CAMEROUN 19
2.1 Description du Système . 19

2.1.1 Contexte et problématique . 19
2.1.2 Objectifs du système multi-agents 20
2.1.3 Bénéficiaires et impact attendu . 21

2.2 Architecture du Système . 23
2.2.1 Vue d’ensemble de l’architecture 23
2.2.2 Les 5 agents spécialisés . 24
2.2.3 Agent coordinateur principal . 28
2.2.4 Diagramme d’architecture . 30

2.3 Scénarios d’Interaction . 31
2.3.1 Cas d’usage : Consultation météorologique 31
2.3.2 Cas d’usage : Diagnostic de maladie 32
2.3.3 Cas d’usage : Analyse économique 34
2.3.4 Diagrammes de séquence annotés 35

3 ENVIRONNEMENT DE DÉVELOPPEMENT 39
3.1 Prérequis Système . 39

3.1.1 Configuration matérielle requise 39
3.1.2 Systèmes d’exploitation supportés 40
3.1.3 Versions Python et dépendances 41

3.2 Installation de l’Environnement . 42
3.2.1 Installation de Python 3.12+ . 42
3.2.2 Installation de Poetry . 45
3.2.3 Installation de Git . 46
3.2.4 Configuration des clés API (Google Gemini) 47

3.3 Structure du Projet . 48
3.3.1 Organisation des dossiers . 48
3.3.2 Fichiers de configuration importants 51
3.3.3 Conventions de nommage et bonnes pratiques 52

4 IMPLÉMENTATION AVEC GOOGLE ADK 54
4.1 Concepts de Base ADK . 54

4.1.1 Création d’un agent simple . 54
4.1.2 Cycle de vie d’un agent ADK . 55
4.1.3 Gestion des comportements . 57
4.1.4 Système de prompts et instructions 58

4.2 Communication Inter-Agents . 60
4.2.1 Mécanisme de communication dans ADK 60
4.2.2 Implémentation des outils (tools) 61
4.2.3 Passage de contexte entre agents 64

4.3 Implémentation de l’Agent Principal . 66

Mbassi Ewolo Loic Aron

iii

4.3.1 Structure du fichier agent.py . 66
4.3.2 Configuration et initialisation . 68
4.3.3 Routage vers les sous-agents . 69

4.4 Implémentation des Agents Spécialisés 70
4.4.1 Agent Météorologique . 70
4.4.2 Agent Cultures . 71
4.4.3 Agent Santé des Plantes . 72
4.4.4 Agent Économique . 73
4.4.5 Agent Ressources . 75

5 INTÉGRATION ET DÉPLOIEMENT 77
5.1 Interface Utilisateur . 77

5.1.1 Interface web avec ADK . 77
5.1.2 API REST pour intégrations externes 78
5.1.3 Exemples d’utilisation . 79

5.2 Tests et Validation . 80
5.2.1 Tests unitaires des agents . 80
5.2.2 Tests d’intégration . 82
5.2.3 Validation des données agricoles 82

5.3 Déploiement . 83
5.3.1 Déploiement local . 83
5.3.2 Containerisation avec Docker . 85
5.3.3 Déploiement en production avec Docker Compose 86

Conclusion 88

RÉFÉRENCES 92
5.3.4 Documentation officielle . 92
5.3.5 Articles et publications . 92
5.3.6 Ressources complémentaires . 93

Annexe 94
5.4 Annexe A : Commandes utiles et dépannage 94

5.4.1 Installation et configuration . 94
5.4.2 Debugging et logs . 95
5.4.3 Maintenance et mise à jour . 95

5.5 Annexe B : FAQ et problèmes courants . 96
5.5.1 Questions fréquentes . 96
5.5.2 Problèmes courants et solutions 96
5.5.3 Conseils de performance . 97
5.5.4 Ressources de support . 97

Mbassi Ewolo Loic Aron

TABLE DES FIGURES

2.1 Architecture multi-agents du système Agriculture Cameroun avec flux
de communication . 30

2.2 Diagramme de séquence pour une consultation météorologique complexe 35
2.3 Diagramme de séquence pour un diagnostic de maladie avec apprentis-

sage . 36
2.4 Diagramme de séquence pour une analyse économique multi-critères . 37

3.1 Interface d’installation Python sur Windows 43
3.2 Installation de Python sur macOS avec Homebrew 44
3.3 Installation de Python sur Ubuntu Linux 44
3.4 Installation automatisée de Poetry . 45
3.5 Options d’installation recommandées pour Git sur Windows 46
3.6 Configuration sécurisée des variables d’environnement 47
3.7 Structure réelle du projet Agriculture Cameroun avec Google ADK . . . 49
3.8 Structure complète du projet avec fichiers de configuration et documen-

tation . 50

4.1 Les phases du cycle de vie d’un agent ADK 55

5.1 Architecture de l’interface web ADK . 77
5.2 Stack de déploiement Docker Compose 87

iv

LIST OF LISTINGS

4.1 Agent météorologique avec ADK . 54
4.2 Gestion du contexte avec callback . 56
4.3 Instructions pour comportements adaptatifs 57
4.4 Instructions spécialisées pour l’agent santé 58
4.5 Communication inter-agents avec AgentTool 60
4.6 Outil de diagnostic des maladies . 61
4.7 Gestion du contexte partagé entre agents 64
4.8 Structure complète de l’agent principal 66
4.9 Configuration du système . 68
4.10 Routage intelligent vers les agents . 69
4.11 Outils météorologiques . 70
4.12 Données agricoles camerounaises . 71
4.13 Base de données phytosanitaire . 72
4.14 Analyse économique . 74
4.15 Gestion des ressources . 75

5.1 Configuration de l’agent principal pour l’interface 77
5.2 Utilisation de l’API REST ADK . 78
5.3 Interface CLI de démonstration (extrait de examples/demo_cli.py) . . . 79
5.4 Tests unitaires réels du projet (tests/test_agents.py) 80
5.5 Tests d’intégration des données (tests/test_agents.py) 82
5.6 Validation des données agricoles (agriculture_cameroun/utils/data.py) 82
5.7 Script de déploiement local (setup.sh) . 83
5.8 Dockerfile du projet . 85
5.9 Configuration Docker Compose (docker-compose.yml) 86

v

RÉSUMÉ

Ce tutoriel, développé dans le cadre de l’unité d’enseignement SMA (Système
Multi-Agent), présente l’implémentation d’un système multi-agents pour l’agricul-
ture camerounaise à l’aide de Google ADK (Agent Development Kit). Dans ce travail,
nous explorons pas à pas comment les systèmes multi-agents permettent de représen-
ter efficacement les interactions complexes entre différents acteurs agricoles (agricul-
teurs, conseillers techniques, fournisseurs) et les agents spécialisés (météorologique,
cultures, santé des plantes, économique, ressources) dans un environnement partagé.
Notre approche répond aux défis de l’accès limité à l’expertise agricole, de la gestion
sub-optimale des ressources, et de l’adaptation au changement climatique. En suivant
une architecture modulaire avec Google ADK et l’intégration des modèles de langage
(LLM), nous développons une structure capable de simuler et d’assister les opéra-
tions agricoles avec une ontologie partagée et des protocoles d’interaction en langage
naturel. Ce tutoriel offre aux étudiants un cas pratique illustrant l’application métho-
dique des concepts des SMA à un domaine complexe et vital pour le développement
économique du Cameroun.

Mots-clés : Système multi-agent, ontologie, Google ADK, agriculture intelligente, mo-
dèles de langage, simulation agricole, Cameroun.

vi

ABSTRACT

This tutorial, developed as part of the MAS (Multi-Agent System) teaching unit,
presents the implementation of a multi-agent system for Cameroonian agriculture
using Google ADK (Agent Development Kit). In this work, we explore step-by-step
how multi-agent systems can effectively represent the complex interactions between
different agricultural stakeholders (farmers, technical advisors, suppliers) and spe-
cialized agents (meteorological, crops, plant health, economic, resources) in a shared
environment. Our approach addresses the challenges of limited access to agricultural
expertise, sub-optimal resource management, and climate change adaptation. Follo-
wing a modular architecture with Google ADK and the integration of Large Language
Models (LLMs), we develop a structure capable of simulating and assisting agricultu-
ral operations with a shared ontology and natural language interaction protocols. This
tutorial offers students a practical case illustrating the methodical application of MAS
concepts to a complex domain vital for Cameroon’s economic development.

Keywords : Multi-agent systems, Google ADK, smart agriculture, language models,
agricultural simulation, Cameroon.

vii

GLOSSAIRE

Agent agricole Entité logicielle autonome spécialisée dans un domaine agricole spé-
cifique (météorologie, cultures, économie, etc.) capable d’interagir pour fournir
des conseils aux agriculteurs.

Agriculture intelligente Approche agricole utilisant les technologies numériques pour
optimiser la production, réduire les coûts et améliorer la durabilité environne-
mentale.

Google ADK Agent Development Kit, framework moderne permettant de créer des
agents intelligents augmentés par des modèles de langage.

Modèle de langage (LLM) Système d’intelligence artificielle capable de comprendre
et générer du langage naturel, utilisé pour faciliter l’interaction avec les agricul-
teurs.

Ontologie agricole Représentation formelle et partagée des connaissances du domaine
agricole camerounais, définissant les cultures, pratiques, maladies et leurs rela-
tions.

Protocole d’interaction Ensemble de règles définissant comment les agents agricoles
communiquent entre eux et avec les utilisateurs pour échanger des informations.

Système multi-agents (SMA) Architecture informatique distribuée où plusieurs agents
autonomes collaborent pour résoudre des problèmes agricoles complexes.

Agent coordinateur Agent principal responsable de l’orchestration des interactions
entre les agents spécialisés et de la synthèse des réponses.

Gemini Modèle de langage de Google intégré dans ADK pour permettre la compré-
hension du langage naturel et la génération de réponses.

Tool (outil) Fonction ou service que les agents peuvent invoquer pour étendre leurs
capacités au-delà de la génération de texte.

viii

LISTE DES ABRÉVIATIONS

SMA Système Multi-Agents

ADK Agent Development Kit

LLM Large Language Model - Modèle de Langage de Grande Taille

API Application Programming Interface - Interface de Programmation
d’Application

FIPA Foundation for Intelligent Physical Agents

ACL Agent Communication Language - Langage de Communication entre
Agents

UML Unified Modeling Language

JADE Java Agent DEvelopment Framework

REST REpresentational State Transfer

JSON JavaScript Object Notation

FCFA Franc de la Communauté Financière Africaine

IoT Internet of Things - Internet des Objets

CLI Command Line Interface - Interface en Ligne de Commande

GUI Graphical User Interface - Interface Graphique Utilisateur

SDK Software Development Kit

ix

INTRODUCTION

Contexte Social

L’agriculture camerounaise représente un secteur économique vital employant
près de 70% de la population active et contribuant significativement au PIB national.
Les agriculteurs font face à des défis multiples : accès limité aux informations mé-
téorologiques fiables, difficultés dans le diagnostic des maladies des cultures, mécon-
naissance des prix du marché, et gestion souvent empirique des ressources naturelles.
Cette situation freine la productivité agricole et limite l’amélioration des conditions
de vie des populations rurales.

Le système agricole camerounais se caractérise par une grande diversité de cultures
(cacao, café, maïs, manioc, plantain) réparties sur dix régions aux conditions agro-
écologiques distinctes. Cette complexité nécessite une expertise technique que la plu-
part des petits agriculteurs n’ont pas les moyens d’obtenir, créant ainsi un fossé entre
les connaissances agricoles modernes et les pratiques sur le terrain.

Contexte technologique

Les systèmesmulti-agents (SMA) représentent une approche technologique parti-
culièrement adaptée à la modélisation et à l’assistance dans des domaines complexes
comme l’agriculture. Ils permettent de créer des entités autonomes spécialisées qui
peuvent collaborer pour résoudre des problèmes nécessitant des expertises diverses.

L’émergence de Google ADK (Agent Development Kit) marque une évolution
majeure dans le développement de systèmes multi-agents. Contrairement aux frame-
works traditionnels comme JADE qui nécessitent une programmation explicite de chaque
comportement, ADK intègre nativement les modèles de langage (LLM) permettant
aux agents de comprendre et de communiquer en langage naturel. Cette approche ré-
volutionne l’interaction homme-machine et rend les systèmes experts accessibles aux
utilisateurs non techniques.

Dans le contexte actuel de transformation numérique de l’agriculture et de l’adop-
tion croissante des technologies intelligentes, les systèmes basés sur ADK offrent des
perspectives intéressantes pour démocratiser l’accès à l’expertise agricole et améliorer
la prise de décision des agriculteurs.

1

2

Problème et Problématique

L’agriculture camerounaise fait face à une problématique centrale : comment four-
nir une expertise agricole personnalisée et accessible à des millions de petits agri-
culteurs dispersés géographiquement et ayant des niveaux d’éducation variés?

Les défis spécifiques incluent :

— La fragmentation de l’information : les données météorologiques, les conseils
agronomiques, les informations sur les maladies et les prix du marché sont dis-
persés et difficiles d’accès

— Le manque d’expertise locale : peu de conseillers agricoles pour couvrir l’en-
semble du territoire national

— La barrière technologique : nécessité de créer des interfaces simples et intuitives
adaptées aux réalités locales

— La diversité des contextes : variabilité des conditions agro-écologiques, des cultures
et des pratiques selon les régions

Dans ce contexte, se pose la nécessité de concevoir un système intelligent capable
d’intégrer et de coordonner différentes expertises agricoles pour fournir des conseils
personnalisés et actionnables aux agriculteurs camerounais, tout en restant accessible
via des interfaces simples utilisant le langage naturel.

Objectifs

Ce tutoriel vise à concevoir et implémenter un système multi-agents pour l’assis-
tance agricole au Cameroun avec les objectifs spécifiques suivants :

— Développer une architecture multi-agents modulaire intégrant cinq agents spé-
cialisés (météorologique, cultures, santé des plantes, économique, ressources)
coordonnés par un agent principal

— Utiliser Google ADK pour créer des agents capables de comprendre les requêtes
en langage naturel et de fournir des réponses contextualisées

— Définir une ontologie agricole camerounaise permettant aux agents de partager
des connaissances communes sur les cultures, pratiques et contextes locaux

— Implémenter des mécanismes de communication inter-agents permettant la ré-
solution collaborative de problèmes complexes

— Créer une interface utilisateur accessible permettant aux agriculteurs d’interagir
naturellement avec le système

— Démontrer l’application pratique des concepts théoriques des SMA dans un contexte
réel et socialement impactant

Le système doit permettre aux agriculteurs camerounais d’obtenir des conseils per-
sonnalisés sur les meilleures pratiques culturales, la gestion des maladies, l’optimisa-
tion des ressources et les opportunités économiques, contribuant ainsi à l’amélioration
de la productivité agricole nationale.

Mbassi Ewolo Loic Aron

3

Méthodologie

Pour atteindre ces objectifs, nous adoptons une approche méthodologique structu-
rée combinant théorie et pratique :

1. Étude des concepts fondamentaux : Compréhension approfondie des systèmes
multi-agents, de leurs architectures, protocoles de communication et mécanismes
de coordination

2. Analyse comparative des frameworks : Comparaison entre l’approche tradition-
nelle (JADE) et l’approche moderne (Google ADK) pour justifier nos choix tech-
nologiques

3. Conceptionde l’architecture : Définition d’une architecture modulaire avec iden-
tification des agents nécessaires, leurs rôles et interactions

4. Développement incrémental : Implémentation progressive du système en com-
mençant par l’agent coordinateur puis les agents spécialisés

5. Intégration des LLM : Utilisation de Gemini pour augmenter les capacités de
compréhension et de génération de langage naturel des agents

6. Tests et validation : Mise en place de scénarios d’interaction réalistes pour vali-
der le comportement du système

7. Déploiement et documentation : Configuration de l’environnement de produc-
tion et création de guides d’utilisation

Mbassi Ewolo Loic Aron

1
CONCEPTS FONDAMENTAUX DES

SYSTÈMES MULTI-AGENTS

1.1 Introduction aux Systèmes Multi-Agents (SMA)

1.1.1 Définition et caractéristiques d’un SMA

Un SystèmeMulti-Agents (SMA) représente une approche révolutionnaire en in-
formatique qui s’inspire des organisations sociales pour résoudre des problèmes com-
plexes. Contrairement aux systèmes traditionnels centralisés où un seul programme
contrôle l’ensemble des opérations, un SMA est composé de plusieurs entités auto-
nomes appelées agents qui coexistent, interagissent et collaborent dans un environne-
ment partagé pour atteindre des objectifs individuels ou collectifs.

Pour comprendre véritablement ce qu’est un SMA, imaginez une équipe de spécia-
listes travaillant sur un projet complexe. Chaque membre possède ses propres compé-
tences, sa propre vision du problème et ses propres méthodes de travail. Ils commu-
niquent entre eux, partagent des informations, négocient des solutions et coordonnent
leurs actions pour atteindre un objectif commun. Un SMA fonctionne exactement de
cette manière, mais avec des agents logiciels plutôt que des humains.

Les caractéristiques fondamentales d’un SMA incluent la distribution du contrôle
et des connaissances entre plusieurs agents, où aucun agent ne possède une vue com-
plète du système ou ne peut contrôler entièrement son comportement. Cette distri-
bution apporte une robustesse remarquable au système, car la défaillance d’un agent
n’entraîne pas nécessairement l’échec du système entier. Les autres agents peuvent
compenser, réorganiser leurs interactions ou trouver des solutions alternatives.

Lamodularité constitue une autre caractéristique essentielle des SMA. Chaque agent
représente un module indépendant avec ses propres responsabilités, facilitant ainsi le
développement, la maintenance et l’évolution du système. Cette modularité permet
d’ajouter ou de retirer des agents selon les besoins, offrant une flexibilité et une scalabi-
lité difficiles à atteindre avec des architectures monolithiques.

L’émergencede comportements complexes à partir d’interactions simples entre agents
représente l’un des aspects les plus fascinants des SMA. Des agents suivant des règles

4

5

relativement simples peuvent, par leurs interactions, produire des comportements so-
phistiqués et des solutions innovantes que personne n’avait explicitement program-
mées. Cette propriété émergente rappelle les phénomènes observés dans la nature,
comme l’organisation des colonies de fourmis ou les mouvements coordonnés des
bancs de poissons.

1.1.2 Notion d’agent : autonomie, réactivité, pro-activité, socialité

Un agent dans le contexte des SMA est bien plus qu’un simple programme infor-
matique. Il s’agit d’une entité computationnelle sophistiquée qui perçoit son environ-
nement, prend des décisions et agit pour atteindre ses objectifs. Pour qu’une entité
logicielle soit considérée comme un agent, elle doit posséder quatre propriétés fonda-
mentales qui définissent son essence même.

L’autonomie constitue la première et peut-être la plus importante caractéristique
d’un agent. Un agent autonome opère sans intervention directe humaine ou d’autres
agents et possède un contrôle sur ses actions et son état interne. Cette autonomie ne
signifie pas l’isolation totale, mais plutôt la capacité de prendre des décisions indé-
pendantes basées sur ses connaissances, ses objectifs et sa perception de l’environne-
ment. Par exemple, dans notre système agricole, l’Agent Météorologique décide de ma-
nière autonome quand collecter des données, comment les analyser et quand alerter
les autres agents de conditions météorologiques critiques.

La réactivité permet à l’agent de percevoir son environnement et de répondre en
temps opportun aux changements qui s’y produisent. Un agent réactif maintient une
vigilance constante sur son environnement, détecte les modifications pertinentes et
ajuste son comportement en conséquence. Cette réactivité est cruciale pour mainte-
nir la pertinence et l’efficacité de l’agent dans un environnement dynamique. L’Agent
Santé des Plantes, par exemple, doit réagir rapidement lorsqu’il détecte des symp-
tômes de maladie dans les données qu’il analyse, déclenchant immédiatement un pro-
cessus de diagnostic et de recommandation de traitement.

La pro-activité distingue les agents intelligents des simples programmes réactifs.
Un agent pro-actif ne se contente pas de réagir aux événements ; il prend des initiatives,
anticipe les besoins futurs et agit pour atteindre ses objectifs sans attendre des stimuli
externes. Cette capacité d’initiative permet aux agents de planifier, d’optimiser leurs
actions et de contribuer activement à la résolution de problèmes. L’Agent Économique
illustre parfaitement cette propriété lorsqu’il analyse les tendances du marché pour
anticiper les fluctuations de prix et conseiller proactivement les agriculteurs sur les
meilleures périodes de vente.

La socialité reflète la capacité des agents à interagir avec d’autres agents (et éven-
tuellement avec des humains) à travers un langage de communication commun. Cette
dimension sociale permet la collaboration, la négociation, la coordination et le par-
tage d’informations entre agents. Un agent social comprend les protocoles de commu-
nication, respecte les conventions d’interaction et peut s’engager dans des dialogues

Mbassi Ewolo Loic Aron

6

complexes pour résoudre des problèmes collectivement. Dans notre système, tous les
agents communiquent entre eux pour fournir des recommandations cohérentes et com-
plètes aux agriculteurs.

1.1.3 Architecture des SMA : agents, environnement, interactions

L’architecture d’un SMA repose sur trois composants fondamentaux interdépen-
dants qui définissent la structure et le fonctionnement du système. Comprendre ces
composants et leurs relations est essentiel pour concevoir et implémenter des SMA
efficaces.

Les agents constituent le premier composant, représentant les entités actives du
système. Chaque agent possède sa propre architecture interne qui peut varier consi-
dérablement selon sa complexité et ses responsabilités. Les architectures d’agents les
plus courantes incluent les agents réactifs simples qui répondent directement aux stimuli
selon des règles prédéfinies, les agents délibératifs qui maintiennent une représentation
symbolique du monde et planifient leurs actions, et les agents hybrides qui combinent
réactivité et délibération pour allier efficacité et sophistication. Dans notre système
agricole, l’Agent Coordinateur Principal adopte une architecture hybride, capable de
réagir rapidement aux requêtes tout en planifiant la coordination des autres agents.

L’environnement représente le monde dans lequel les agents existent et opèrent. Il
peut être physique (comme un réseau de capteurs agricoles), virtuel (comme une base
de données), ou mixte. L’environnement définit les conditions d’existence des agents,
les ressources disponibles, les contraintes opérationnelles et les possibilités d’action.
Dans notre projet, l’environnement comprend les données météorologiques, les infor-
mations sur les cultures, les prix du marché, et l’état des exploitations agricoles. Cet
environnement est dynamique, changeant continuellement avec les conditions météo-
rologiques, les cycles agricoles et les fluctuations du marché.

Les interactions entre agents constituent le troisième pilier de l’architecture SMA.
Ces interactions peuvent prendre diverses formes, de la simple communication d’infor-
mations à la négociation complexe, en passant par la coopération, la compétition ou la
coordination. Les mécanismes d’interaction définissent comment les agents échangent
des informations, synchronisent leurs actions, résolvent les conflits et atteignent des
consensus. Dans notre système, les interactions sont principalement coopératives, les
agents partageant leurs connaissances spécialisées pour fournir des recommandations
complètes aux agriculteurs.

L’architecture globale d’un SMA doit également considérer l’organisationdes agents,
qui peut être hiérarchique (avec des relations de subordination), hétérarchique (sans hié-
rarchie fixe), ou hybride. Notre système adopte une organisation hybride avec l’Agent
Coordinateur Principal servant de point central de coordination sans pour autant exer-
cer un contrôle hiérarchique strict sur les agents spécialisés.

Mbassi Ewolo Loic Aron

7

1.1.4 Domaines d’application des SMA

Les systèmes multi-agents ont trouvé des applications dans une variété impression-
nante de domaines, démontrant leur polyvalence et leur efficacité pour résoudre des
problèmes complexes nécessitant distribution, autonomie et adaptation.

Dans le domaine de l’agriculture intelligente, qui est le focus de notre tutoriel,
les SMA révolutionnent la gestion des exploitations agricoles. Au-delà de notre sys-
tème d’assistance aux agriculteurs camerounais, les SMA sont utilisés pour l’optimisa-
tion de l’irrigation, la gestion des serres automatisées, la surveillance des cultures par
drones, et la coordination des machines agricoles autonomes. Ces applications per-
mettent une agriculture de précision, réduisant les coûts et l’impact environnemental
tout en maximisant les rendements.

Le secteur des transports et de la logistique bénéficie grandement des SMA pour
la gestion du trafic urbain, l’optimisation des chaînes d’approvisionnement et la co-
ordination des véhicules autonomes. Les agents représentant des véhicules, des infra-
structures routières et des centres de contrôle collaborent pour minimiser les embou-
teillages, optimiser les itinéraires et améliorer la sécurité routière. Dans les ports et
aéroports, les SMA coordonnent les mouvements de marchandises, l’allocation des
ressources et la planification des opérations.

Les marchés financiers utilisent intensivement les SMA pour le trading automa-
tisé, l’analyse de risques et la détection de fraudes. Des agents spécialisés surveillent
les marchés, analysent les tendances, exécutent des transactions et ajustent les por-
tefeuilles en temps réel. La nature distribuée des SMA permet de traiter d’énormes
volumes de données financières et de réagir aux changements du marché avec une
rapidité impossible pour les traders humains.

Dans le domaine de la santé, les SMA assistent le diagnostic médical, la gestion
hospitalière et le suivi des patients. Des agents représentant différents spécialistes mé-
dicaux peuvent collaborer pour établir des diagnostics complexes, tandis que d’autres
agents gèrent l’allocation des ressources hospitalières, la planification des interven-
tions et le suivi des traitements. Les systèmes de télémédecine utilisent des SMA pour
coordonner les soins à distance et assurer le suivi continu des patients chroniques.

L’industrie manufacturière adopte les SMA pour créer des usines intelligentes où
les machines, les robots et les systèmes de contrôle sont représentés par des agents
qui coordonnent la production, optimisent l’utilisation des ressources et s’adaptent
aux changements de demande. Cette approche permet une flexibilité et une efficacité
accrues dans la production industrielle.

Mbassi Ewolo Loic Aron

8

1.2 Communication entre Agents

1.2.1 Langage de Communication entre Agents (ACL)

La communication constitue le fondement de toute collaboration efficace entre agents
dans un SMA. Le Langage de Communication entre Agents (ACL - Agent Commu-
nication Language) fournit un cadre standardisé permettant aux agents d’échanger
des informations de manière structurée et compréhensible, indépendamment de leur
implémentation interne ou de leur architecture.

Un ACL va bien au-delà d’un simple protocole de transmission de données. Il
encapsule la sémantique de la communication, définissant non seulement comment
les messages sont structurés, mais aussi ce qu’ils signifient et quelles actions ils im-
pliquent. Cette richesse sémantique permet aux agents de s’engager dans des inter-
actions sophistiquées, allant de simples échanges d’informations à des négociations
complexes et des coordinations élaborées.

Le standard le plus largement adopté est FIPA-ACL (Foundation for Intelligent
Physical Agents - Agent Communication Language), qui définit une structure de mes-
sage comprenant plusieurs composants essentiels. Le performatif indique l’intention
communicative du message (informer, demander, proposer, etc.). L’expéditeur et le
destinataire identifient les agents impliqués dans la communication. Le contenu porte
l’information principale du message. Le langage de contenu spécifie comment interpré-
ter le contenu. L’ontologie définit le vocabulaire et les concepts utilisés. Des paramètres
additionnels comme l’identifiant de conversation, le protocole utilisé et les contraintes tem-
porelles enrichissent la communication.

Dans le contexte de Google ADK, l’ACL est implémenté de manière moderne et
flexible, tirant parti des capacités des modèles de langage pour comprendre et générer
des messages en langage naturel tout en maintenant la structure nécessaire pour une
communication inter-agents fiable. Cette approche hybride combine la rigueur des
ACL traditionnels avec la flexibilité et l’expressivité du langage naturel.

La standardisation de l’ACL apporte plusieurs avantages cruciaux. L’interopérabilité
permet à des agents développés indépendamment de communiquer efficacement. La
réutilisabilité facilite l’intégration de nouveaux agents dans des systèmes existants. La
maintenabilité est améliorée car les protocoles de communication sont clairement défi-
nis et documentés. L’extensibilité permet d’ajouter de nouveaux types de messages et
de protocoles selon les besoins évolutifs du système.

1.2.2 Performatives FIPA-ACL (INFORM, REQUEST, QUERY, PROPOSE,
etc.)

Les performatifs représentent l’essence de la communication entre agents, définis-
sant l’intention communicative derrière chaque message. Chaque performatif encode
une action de communication spécifique avec sa propre sémantique, ses conditions de
satisfaction et ses effets attendus sur l’état mental des agents participants.

Mbassi Ewolo Loic Aron

9

Le performatif INFORM est utilisé lorsqu’un agent souhaite communiquer une
information qu’il considère comme vraie à un autre agent. L’agent émetteur s’engage
sur la véracité de l’information transmise et s’attend à ce que le récepteur mette à jour
ses croyances en conséquence. Dans notre système agricole, l’Agent Météorologique
utilise fréquemment INFORM pour notifier les autres agents des conditions météoro-
logiques actuelles ou prévues. Par exemple, il pourrait envoyer un message INFORM
contenant ”La probabilité de pluie pour demain est de 80

Le performatif REQUEST exprime une demande d’action de la part de l’agent
émetteur. Il indique que l’émetteur souhaite que le destinataire effectue une action
spécifique et s’attend à ce que cette action soit réalisée si le destinataire en a la capa-
cité et la volonté. L’Agent Coordinateur Principal utilise REQUEST pour demander
aux agents spécialisés d’analyser des aspects spécifiques d’une requête utilisateur. Par
exemple, il pourrait envoyer ”REQUEST : Analyser la rentabilité de la culture du maïs
pour la saison prochaine” à l’Agent Économique.

Le performatif QUERY est employé pour interroger un autre agent sur une infor-
mation spécifique. Contrairement à REQUEST qui demande une action, QUERY de-
mande spécifiquement une information. Il existe plusieurs variantes de QUERY, no-
tamment QUERY-IF pour demander si une proposition est vraie et QUERY-REF pour
demander la valeur d’une expression. L’Agent Cultures pourrait utiliser ”QUERY-IF :
Est-ce que le sol de la parcelle Nord convient à la culture du cacao ?” pour interroger
l’Agent Ressources.

Le performatif PROPOSE initie une négociation en proposant une action ou un
plan à un autre agent. Il indique que l’émetteur est prêt à effectuer une certaine action
sous certaines conditions et attend une réponse du destinataire. Dans notre système,
l’Agent Ressources pourrait proposer ”PROPOSE : Réduire l’irrigation de 20

D’autres performatifs importants incluent AGREE pour accepter une proposition
ou une demande, REFUSE pour décliner, CONFIRM pour confirmer une information
incertaine, DISCONFIRM pour nier une information, et SUBSCRIBE pour s’abonner
à des notifications d’événements spécifiques. Chaque performatif possède des condi-
tions de satisfaction précises et des protocoles d’interaction associés qui garantissent
une communication cohérente et prévisible entre agents.

1.2.3 Protocoles d’interaction

Les protocoles d’interaction définissent les séquences structurées d’échanges de
messages entre agents pour accomplir des tâches spécifiques. Ces protocoles établissent
les règles de conversation, spécifiant qui peut envoyer quel type de message à quel mo-
ment, et comment les agents doivent répondre dans différentes situations. Ils garan-
tissent que les interactions complexes se déroulent de manière ordonnée et prévisible.

Le protocole de requête simple (Request Protocol) est l’un des plus fondamen-
taux. Il commence par un agent initiateur envoyant un REQUEST à un participant. Le
participant peut répondre avec AGREE (indiquant qu’il accepte d’effectuer l’action),

Mbassi Ewolo Loic Aron

10

REFUSE (s’il ne peut ou ne veut pas effectuer l’action), ou NOT-UNDERSTOOD (s’il
ne comprend pas la requête). Si le participant accepte, il effectue l’action demandée
et envoie ensuite soit INFORM-DONE (action complétée avec succès) soit FAILURE
(échec de l’action). Ce protocole simple mais efficace structure la majorité des interac-
tions de demande-réponse dans notre système.

Le protocole de négociation Contract Net est particulièrement adapté pour la dis-
tribution de tâches et la sélection de fournisseurs de services. Un agent initiateur envoie
un appel d’offres (CFP - Call For Proposals) à plusieurs participants potentiels. Les par-
ticipants intéressés et capables répondent avec des PROPOSE contenant leurs offres.
L’initiateur évalue les propositions et envoie ACCEPT-PROPOSAL au(x) meilleur(s)
candidat(s) et REJECT-PROPOSAL aux autres. Les agents acceptés exécutent ensuite
la tâche et rapportent les résultats. Dans notre système, ce protocole pourrait être uti-
lisé lorsque l’Agent Coordinateur cherche le meilleur agent pour répondre à une re-
quête spécifique.

Le protocole de souscription (Subscribe Protocol) permet aux agents de s’abon-
ner à des notifications d’événements ou de changements d’état. Un agent envoie SUB-
SCRIBE avec les conditions de notification désirées. L’agent fournisseur répond avec
AGREE ou REFUSE. Si accepté, le fournisseur envoie des messages INFORM chaque
fois que les conditions spécifiées sont remplies. L’Agent Économique pourrait s’abon-
ner aux mises à jour de prix du marché, recevant automatiquement des notifications
lorsque les prix de certains produits agricoles changent significativement.

Les protocoles demédiation facilitent la communication entre agents qui ne peuvent
pas interagir directement. Un agent médiateur reçoit des messages d’un agent source,
les traite ou les traduit si nécessaire, et les transmet à l’agent destinataire. Dans notre
système, l’Agent Coordinateur Principal agit souvent comme médiateur, traduisant
les requêtes en langage naturel des utilisateurs en requêtes structurées pour les agents
spécialisés.

L’implémentation de ces protocoles dans Google ADK bénéficie de la flexibilité
des modèles de langage, permettant une interprétation plus nuancée des messages
tout en maintenant la structure protocolaire nécessaire. Les agents peuvent ainsi gérer
des variations dans la formulation des messages tout en respectant la sémantique des
protocoles.

1.2.4 Ontologies et représentation des connaissances

Les ontologies dans les SMA fournissent un vocabulaire commun et une concep-
tualisation partagée du domaine d’application, permettant aux agents de communi-
quer avec précision et sans ambiguïté. Une ontologie définit les concepts, leurs pro-
priétés, les relations entre concepts, et les contraintes qui gouvernent leur utilisation.
Elle agit comme un dictionnaire sémantique partagé qui assure que tous les agents
interprètent les informations de manière cohérente.

Dans notre système agricole, l’ontologie doit capturer la richesse et la complexité

Mbassi Ewolo Loic Aron

11

du domaine agricole camerounais. Les concepts fondamentaux incluent les cultures (maïs,
cacao, café, plantain, etc.), chacune avec ses propriétés spécifiques comme le cycle de
croissance, les besoins en eau, la résistance aux maladies et les conditions optimales de
culture. Les conditions environnementales englobent les types de sol, les paramètres cli-
matiques, les saisons et les zones agroclimatiques du Cameroun. Les pratiques agricoles
couvrent les techniques de culture, les méthodes d’irrigation, les traitements phytosa-
nitaires et les calendriers agricoles.

Les relations entre concepts enrichissent l’ontologie en capturant les dépendances
et interactions du monde réel. Par exemple, la relation ”convient_à” lie un type de sol
à une culture, ”nécessite” connecte une culture à ses besoins en ressources, ”traite” as-
socie un produit phytosanitaire à une maladie. Ces relations permettent aux agents de
raisonner sur le domaine et de dériver de nouvelles connaissances à partir des infor-
mations existantes.

La hiérarchie des concepts organise les connaissances de manière structurée. Les cultures
peuvent être organisées en familles botaniques, les maladies classées par type d’agent
pathogène, les sols catégorisés selon leur composition et leurs propriétés. Cette orga-
nisation hiérarchique facilite le raisonnement par généralisation et spécialisation, per-
mettant aux agents d’appliquer des connaissances générales à des cas spécifiques.

Les axiomes et règles encodent les contraintes et les lois du domaine. Par exemple,
”Une culture ne peut pas être semée si la température du sol est inférieure à son seuil
minimal de germination” ou ”L’irrigation doit être réduite pendant la période de ma-
turation des fruits”. Ces règles guident le comportement des agents et assurent la co-
hérence de leurs recommandations.

Dans Google ADK, l’intégration des ontologies avec les modèles de langage offre
une approche unique. Les LLM peuvent comprendre et manipuler les concepts onto-
logiques exprimés en langage naturel tout en maintenant la rigueur sémantique néces-
saire. Cette approche hybride permet une plus grande flexibilité dans l’expression des
requêtes utilisateur tout en garantissant la précision des réponses des agents.

1.3 Présentation de Google ADK (Agent Development Kit)

1.3.1 Qu’est-ce que Google ADK?

Google Agent Development Kit (ADK) représente une évolution majeure dans le
développement de systèmes multi-agents, proposant une approche moderne qui tire
parti des avancées récentes en intelligence artificielle, notamment les modèles de lan-
gage de grande taille. Contrairement aux frameworks traditionnels qui nécessitent une
programmation explicite de chaque comportement d’agent, ADK permet de créer des
agents intelligents en combinant la puissance des LLM avec une architecture d’agents
structurée.

ADK est conçu pour simplifier radicalement le développement d’agents tout en
offrant une flexibilité et une puissance exceptionnelles. Le framework permet aux dé-

Mbassi Ewolo Loic Aron

12

veloppeurs de définir des agents en spécifiant leurs capacités, leurs objectifs et leurs
contraintes en langage naturel ou semi-structuré, laissant le modèle de langage sous-
jacent gérer la complexité des interactions et du raisonnement. Cette approche décla-
rative contraste fortement avec l’approche impérative des frameworks traditionnels.

L’architecture d’ADK repose sur le concept d’agents augmentés par LLM, où chaque
agent combine une structure logique claire avec les capacités de compréhension et de
génération du langage naturel. Cette combinaison permet aux agents de comprendre
des requêtes complexes, de raisonner sur des informations non structurées, et de géné-
rer des réponses nuancées et contextuellement appropriées. Les agents ADK peuvent
ainsi traiter une variété beaucoup plus large d’inputs et s’adapter à des situations non
anticipées lors de leur conception.

La philosophie de conception d’ADK privilégie la simplicité d’utilisation sans sacri-
fier la puissance. Les développeurs peuvent créer des agents fonctionnels avec quelques
lignes de configuration, tout en ayant la possibilité de personnaliser profondément le
comportement des agents pour des cas d’usage spécifiques. Cette approche progres-
sive permet aux débutants de démarrer rapidement tout en offrant aux experts les
outils nécessaires pour créer des systèmes sophistiqués.

L’intégration native avec l’écosystème Google Cloud constitue un autre avantage
majeur d’ADK. Les agents peuvent facilement accéder aux services Google Cloud comme
BigQuery pour l’analyse de données, Cloud Storage pour le stockage, et diverses API
pour enrichir leurs capacités. Cette intégration transparente simplifie le développe-
ment d’agents qui nécessitent l’accès à des ressources externes ou le traitement de
grandes quantités de données.

1.3.2 Architecture et composants principaux

L’architecture de Google ADK est conçue selon des principes de modularité et d’ex-
tensibilité, permettant aux développeurs de construire des systèmes complexes à par-
tir de composants simples et réutilisables. Au cœur de cette architecture se trouve le
moteur d’exécution d’agents, qui orchestre le cycle de vie des agents, gère leurs inter-
actions et assure l’intégration avec les modèles de langage.

Le Agent Core constitue le composant fondamental de chaque agent ADK. Il en-
capsule l’identité de l’agent, ses capacités, ses objectifs et son état interne. Le Core gère
également l’interface entre l’agent et le modèle de langage, traduisant les requêtes en
prompts appropriés et interprétant les réponses du modèle dans le contexte de l’agent.
Cette couche d’abstraction permet aux développeurs de se concentrer sur la logique
métier plutôt que sur les détails techniques de l’interaction avec les LLM.

Le système de Tools (outils) représente l’un des aspects les plus puissants d’ADK.
Les outils sont des fonctions ou des services que les agents peuvent invoquer pour
étendre leurs capacités au-delà de la génération de texte. Un outil peut être aussi
simple qu’une fonction de calcul ou aussi complexe qu’une API externe. Dans notre
système agricole, nous définissons des outils pour accéder aux données météorolo-

Mbassi Ewolo Loic Aron

13

giques, consulter les bases de données agricoles, analyser les images de plantes, et cal-
culer les indicateurs économiques. Le système de tools d’ADK gère automatiquement
la découverte, l’invocation et la gestion des erreurs, simplifiant considérablement l’in-
tégration de fonctionnalités externes.

Le Context Manager maintient et gère le contexte conversationnel et opérationnel
de chaque agent. Il stocke l’historique des interactions, les informations de session,
et tout état pertinent nécessaire pour maintenir la cohérence des conversations et des
actions de l’agent. Le Context Manager implémente des stratégies sophistiquées de
gestion de la mémoire, permettant aux agents de maintenir des conversations longues
tout en optimisant l’utilisation des ressources.

Le Orchestrator coordonne les interactions entre multiple agents, gérant les flux de
communication, la résolution des dépendances et l’ordonnancement des tâches. Dans
notre système, l’Orchestrator permet à l’Agent Coordinateur Principal de solliciter ef-
ficacement les agents spécialisés, de gérer les réponses parallèles et de synthétiser les
résultats. Il implémente également des mécanismes de gestion des erreurs et de récu-
pération, assurant la robustesse du système face aux défaillances individuelles.

Le Security Layer assure la sécurité et la confidentialité des interactions. Il gère
l’authentification des agents, l’autorisation des actions, le chiffrement des communi-
cations et l’audit des activités. Cette couche est particulièrement importante dans notre
contexte agricole où les données des agriculteurs doivent être protégées et où l’accès
aux différentes fonctionnalités doit être contrôlé selon les rôles et permissions.

1.3.3 Modèles d’agents dans ADK

Google ADK propose plusieurs modèles d’agents pré-configurés qui servent de
points de départ pour différents types d’applications. Ces modèles encapsulent les
meilleures pratiques et les patterns communs, permettant aux développeurs de dé-
marrer rapidement tout en conservant la flexibilité de personnalisation.

Le modèle Conversational Agent est optimisé pour les interactions en langage na-
turel avec les utilisateurs. Il maintient le contexte conversationnel, gère les clarifica-
tions et les désambiguïsations, et génère des réponses naturelles et engageantes. Dans
notre système, l’Agent Coordinateur Principal est basé sur ce modèle, lui permettant
d’interagir naturellement avec les agriculteurs tout en comprenant leurs besoins com-
plexes.

Le modèle Task Agent est conçu pour exécuter des tâches spécifiques avec effica-
cité et précision. Il se concentre sur l’accomplissement d’objectifs définis, utilisant les
outils disponibles de manière optimale et rapportant les résultats de manière structu-
rée. Nos agents spécialisés (Météorologique, Cultures, Santé des Plantes, Économique,
Ressources) sont tous basés sur ce modèle, chacun étant configuré avec les outils et
connaissances spécifiques à son domaine.

Le modèle Analytical Agent excelle dans l’analyse de données et la génération d’in-
sights. Il peut traiter de grandes quantités d’informations, identifier des patterns, et

Mbassi Ewolo Loic Aron

14

produire des rapports détaillés. L’Agent Économique utilise des aspects de ce modèle
pour analyser les tendances du marché, calculer la rentabilité des cultures et générer
des recommandations financières basées sur des données complexes.

Le modèle Monitoring Agent est spécialisé dans la surveillance continue de sys-
tèmes ou de processus. Il détecte les anomalies, génère des alertes et peut déclencher
des actions correctives. L’Agent Météorologique s’inspire de ce modèle pour surveiller
en permanence les conditions climatiques et alerter les autres agents et les agriculteurs
des changements significatifs ou des événements météorologiques importants.

Le modèle Coordinator Agent orchestre les activités d’autres agents, gérant les
workflows complexes et assurant la cohérence des actions distribuées. Ce modèle im-
plémente des stratégies sophistiquées de coordination, de résolution de conflits et d’op-
timisation des ressources. Notre Agent Coordinateur Principal utilise pleinement ce
modèle pour gérer efficacement les interactions entre tous les agents spécialisés du
système.

Chaque modèle d’agent dans ADK peut être étendu et personnalisé selon les be-
soins spécifiques. Les développeurs peuvent combiner des aspects de différents mo-
dèles, ajouter des comportements personnalisés, et intégrer des logiques métier spéci-
fiques. Cette flexibilité permet de créer des agents parfaitement adaptés aux exigences
uniques de chaque application.

1.3.4 Intégration avec les LLM Exemple : Gemini

L’intégration native avec les modèles de langage Gemini constitue l’une des carac-
téristiques les plus innovantes et puissantes de Google ADK. Cette intégration va bien
au-delà d’une simple interface API, offrant une symbiose profonde entre l’architecture
d’agents et les capacités des LLM modernes.

Gemini, le modèle de langage de pointe de Google, apporte aux agents ADK des
capacités de compréhension et de génération du langage naturel sans précédent. Les
agents peuvent comprendre des requêtes complexes formulées de manière naturelle,
tenant compte du contexte, des nuances et même des implications non explicites. Cette
compréhension sophistiquée permet aux agriculteurs d’interagir avec notre système
comme ils le feraient avec un expert humain, sans avoir besoin d’apprendre des com-
mandes spécifiques ou des interfaces complexes.

La génération contextuelle permet aux agents de produire des réponses qui ne sont
pas seulement correctes, mais aussi appropriées au contexte, au niveau de connais-
sance de l’utilisateur et à la situation spécifique. L’Agent Cultures, par exemple, peut
expliquer les techniques de culture en adaptant son langage selon que l’utilisateur est
un agriculteur expérimenté ou un débutant, fournissant plus ou moins de détails tech-
niques selon le besoin.

L’apprentissage en contexte (in-context learning) permet aux agents d’adapter leur
comportement basé sur les exemples et les interactions précédentes sans nécessiter de
réentraînement. Si un agriculteur utilise régulièrement des termes locaux ou des pra-

Mbassi Ewolo Loic Aron

15

tiques spécifiques à sa région, les agents apprennent progressivement à comprendre et
utiliser ce vocabulaire, améliorant ainsi la qualité de la communication au fil du temps.

La capacité de raisonnement multi-étapes de Gemini permet aux agents de décom-
poser des problèmes complexes en sous-problèmes, de planifier des séquences d’ac-
tions et de synthétiser des informations provenant de sources multiples. Lorsqu’un
agriculteur demande ”Quelle culture serait la plus rentable pour ma parcelle l’année
prochaine ?”, l’agent peut orchestrer une analyse complexe impliquant les conditions
du sol, les prévisions météorologiques, les tendances du marché et les ressources dis-
ponibles.

L’interprétation des outils est grandement facilitée par Gemini, qui peut comprendre
quand et comment utiliser les outils disponibles basé sur la requête de l’utilisateur. Le
modèle peut également interpréter les résultats des outils et les intégrer naturellement
dans ses réponses, créant une expérience transparente pour l’utilisateur. Si l’Agent
Santé des Plantes utilise un outil d’analyse d’image pour diagnostiquer une maladie,
Gemini peut expliquer les résultats en termes compréhensibles et proposer des actions
concrètes.

La gestionmultilingue native de Gemini est particulièrement précieuse dans le contexte
camerounais, permettant aux agents de communiquer en français, en anglais, et poten-
tiellement dans les langues locales. Cette capacité assure que le système est accessible
à tous les agriculteurs, indépendamment de leur langue préférée.

1.4 Étude Comparative : Google ADK vs JADE

1.4.1 Tableau comparatif des caractéristiques

Pour comprendre pleinement les différences et les similitudes entre Google ADK
et JADE, il est essentiel d’examiner en détail leurs caractéristiques respectives. Cette
comparaison vous aidera à comprendre pourquoi nous avons choisi ADK pour ce pro-
jet et comment les concepts que vous pourriez connaître de JADE se traduisent dans
le nouveau framework.

Cette comparaison révèle des différences fondamentales dans la philosophie de
conception. JADE, développé au début des années 2000, représente l’approche clas-
sique des SMA avec une emphase sur la conformité aux standards FIPA et le contrôle
explicite du comportement des agents. Google ADK, en revanche, adopte une approche
moderne qui tire parti des avancées en IA et en cloud computing pour simplifier le dé-
veloppement tout en augmentant les capacités.

1.4.2 Avantages et inconvénients de chaque framework

JADE (JavaAgentDEvelopment Framework) a longtemps été le standard de facto
pour le développement de systèmes multi-agents, et pour de bonnes raisons. Ses avan-
tages incluent une conformité stricte aux standards FIPA qui garantit l’interopérabilité

Mbassi Ewolo Loic Aron

16

Caractéristique JADE Google ADK
Langage de programma-
tion

Java Python (principal), support multi-
langage

Architecture Basée sur conteneurs, architecture
distribuée classique

Architecture cloud-native, intégra-
tion LLM native

Communication entre
agents

FIPA-ACL strict, messages structu-
rés

FIPA-ACL flexible + langage natu-
rel via LLM

Développement
d’agents

Programmation impérative, com-
portements explicites

Approche déclarative, comporte-
ments émergents via LLM

Gestion du cycle de vie Manuelle via conteneurs et plate-
formes

Automatisée via orchestrateur
cloud

Scalabilité Limitée par l’architecture, scaling
manuel

Cloud-native, auto-scaling intégré

Interface utilisateur GUI Swing/AWT datée, développe-
ment séparé

Interfaces modernes web/mobile,
intégration native

Débogage Outils de débogage Java standard,
sniffer JADE

Outils cloud modernes, logs struc-
turés, tracing distribué

Courbe d’apprentissage Raide, nécessite expertise Java et
SMA

Plus douce grâce à l’approche dé-
clarative

Intégration IA Limitée, nécessite intégration ma-
nuelle

Native avec Gemini et autres mo-
dèles Google

TABLE 1.1 – Comparaison détaillée entre JADE et Google ADK

avec d’autres systèmes conformes. La maturité du framework, avec plus de deux décen-
nies de développement, signifie une base de code stable et bien testée. La large commu-
nauté d’utilisateurs a produit une documentation extensive, de nombreux exemples
et des solutions à la plupart des problèmes communs. Le contrôle fin sur le comporte-
ment des agents permet d’implémenter des logiques complexes et des optimisations
spécifiques.

Cependant, JADE présente également des inconvénients significatifs dans le contexte
moderne. La courbe d’apprentissage est raide, nécessitant une expertise approfondie
en Java et en concepts SMA. Le développement est verbeux, nécessitant beaucoup de
code boilerplate pour des fonctionnalités basiques. L’architecture montre son âge, avec
des limitations en termes de scalabilité et d’intégration cloud. L’interface utilisateur ba-
sée sur Swing est datée et peu attrayante pour les utilisateurs modernes. L’intégration
avec les technologies modernes d’IA nécessite un effort considérable.

Google ADK apporte une perspective fraîche avec ses propres avantages. L’inté-
gration native avec les LLM permet de créer des agents véritablement intelligents ca-
pables de comprendre et de générer du langage naturel. L’approche déclarative simpli-
fie considérablement le développement, permettant de créer des agents fonctionnels
avec peu de code. L’architecture cloud-native offre une scalabilité et une fiabilité excep-
tionnelles. Les outils de développement modernes, incluant le support pour Python et
les notebooks Jupyter, facilitent le prototypage rapide. L’intégration transparente avec
l’écosystème Google Cloud ouvre l’accès à une multitude de services puissants.

Les inconvénients d’ADK incluent sa relative nouveauté, qui signifie une commu-
nauté plus petite et moins de ressources tierces. La dépendance à l’infrastructure cloud

Mbassi Ewolo Loic Aron

17

peut être problématique pour des déploiements on-premise ou dans des environne-
ments déconnectés. Le coût d’utilisation des LLM peut devenir significatif pour des
applications à grande échelle. La flexibilité de l’approche basée sur LLM peut parfois
conduire à des comportements imprévisibles nécessitant une validation careful. Cer-
tains développeurs peuvent trouver l’abstraction du comportement des agents par les
LLM moins transparente que l’approche explicite de JADE.

1.4.3 Cas d’usage appropriés

Le choix entre JADE et Google ADK dépend largement du contexte d’application,
des contraintes techniques et des objectifs du projet. Comprendre les cas d’usage où
chaque framework excelle permet de faire un choix éclairé.

JADE reste le choix approprié pour les systèmes industriels critiques où la prédicti-
bilité et le contrôle fin sont essentiels. Dans les environnements où chaque action doit
être explicitement programmée et vérifiable, l’approche déterministe de JADE est pré-
férable. Les systèmes embarqués avec des ressources limitées bénéficient de l’empreinte
relativement légère de JADE et de sa capacité à fonctionner sans connexion cloud. Les
applications nécessitant une conformité stricte aux standards FIPA pour l’interopérabilité
avec des systèmes existants trouvent en JADE une solution éprouvée. Les projets acadé-
miques étudiant les concepts fondamentaux des SMA peuvent préférer JADE pour sa
transparence et son adhérence aux modèles théoriques classiques.

GoogleADK excelle dans les applications orientées utilisateur nécessitant des interac-
tions en langage naturel. Notre système d’assistance agricole en est un exemple parfait,
où les agriculteurs peuvent poser des questions complexes sans formation technique.
Les systèmes nécessitant une adaptation rapide à des domaines changeants bénéficient
de la flexibilité des LLM pour comprendre de nouveaux concepts sans reprogramma-
tion. Les applications d’analyse et de synthèse d’information tirent parti des capacités de
raisonnement et de génération des LLM. Les projets nécessitant une mise à l’échelle ra-
pide profitent de l’architecture cloud-native. Les systèmes multi-modaux intégrant texte,
images et autres données bénéficient de l’écosystème Google Cloud intégré.

Les applications hybrides peuvent également être envisagées, utilisant JADE pour les
composants critiques nécessitant un contrôle déterministe et ADK pour les interfaces
utilisateur et les composants d’analyse. Cette approche permet de combiner les forces
des deux frameworks selon les besoins spécifiques de chaque partie du système.

1.4.4 Migration de concepts JADE vers ADK

Pour les développeurs familiers avec JADE, la transition vers Google ADK nécessite
de repenser certains concepts fondamentaux tout en s’appuyant sur les connaissances
existantes des SMA. Cette section guide la traduction des concepts JADE vers leurs
équivalents ADK.

Les Agents JADE, créés en étendant la classe Agent et implémentant des compor-
tements spécifiques, se traduisent en ADK par des configurations d’agents augmentés

Mbassi Ewolo Loic Aron

18

par LLM. Au lieu d’écrire explicitement chaque comportement, vous définissez les ca-
pacités, objectifs et contraintes de l’agent, laissant le LLM générer les comportements
appropriés. Par exemple, un agent JADE avec plusieurs CyclicBehaviours pour gérer
différents types de messages devient en ADK un agent avec des tools et des prompts
qui guident le LLM dans le traitement des requêtes.

Les Behaviours JADE (OneShotBehaviour, CyclicBehaviour, TickerBehaviour, etc.)
n’ont pas d’équivalent direct en ADK car le modèle de programmation est fondamenta-
lement différent. Au lieu de comportements explicites, ADK utilise des handlers d’évé-
nements et des tools que le LLM invoque selon le contexte. Un CyclicBehaviour qui
vérifie périodiquement une condition devient en ADK une combinaison de triggers
temporels et de logique conditionnelle gérée par l’orchestrateur.

Les ACL Messages structurés de JADE sont remplacés en ADK par une approche
hybride. Bien que les agents ADK puissent échanger des messages structurés pour la
compatibilité, ils excellent dans l’interprétation de messages en langage naturel. Un
message JADE comme msg.setPerformative(ACLMessage.REQUEST) ; msg.setContent
(”temperature?”) ; peut simplement devenir ”Quelle est la température actuelle ?” en
ADK, le LLM comprenant l’intention sans structure explicite.

Les Conteneurs et Plateformes JADE sont remplacés par l’infrastructure cloud
d’ADK. La gestion manuelle des conteneurs, du Main Container et des agents contai-
ners devient automatique avec l’orchestrateur ADK. Le déploiement, qui nécessitait
une configuration careful des hôtes et ports en JADE, devient une simple commande
de déploiement cloud en ADK.

Le Directory Facilitator (DF) de JADE, utilisé pour la découverte de services, est
remplacé en ADK par un système de registry plus flexible intégré à l’orchestrateur.
Les agents n’ont plus besoin de s’enregistrer explicitement ; leurs capacités sont auto-
matiquement découvertes et rendues disponibles aux autres agents.

Les Ontologies JADE, définies en Java avec des classes et des schémas stricts, évo-
luent en ADK vers des descriptions plus flexibles que le LLM peut interpréter. Au lieu
de créer des classes Java pour chaque concept, vous pouvez décrire l’ontologie en lan-
gage naturel ou semi-structuré, permettant une évolution plus agile du domaine de
connaissances.

Cette migration conceptuelle ne signifie pas l’abandon des principes fondamen-
taux des SMA. Au contraire, ADK permet d’implémenter ces principes de manière
plus naturelle et flexible, réduisant la complexité technique tout en augmentant les ca-
pacités fonctionnelles. Les développeurs JADE trouveront que leurs connaissances des
patterns d’interaction, des protocoles de coordination et des architectures multi-agents
restent précieuses, même si leur implémentation technique diffère significativement.

Mbassi Ewolo Loic Aron

2

PRÉSENTATION DU PROJET
AGRICULTURE CAMEROUN

2.1 Description du Système

2.1.1 Contexte et problématique

Le Cameroun, surnommé l’Afrique en miniature, présente une diversité agro-écologique
remarquable avec ses dix régions aux caractéristiques climatiques et pédologiques dis-
tinctes. Cette richesse naturelle constitue à la fois un atout majeur et un défi complexe
pour le développement agricole. L’agriculture camerounaise, qui emploie près de 70%
de la population active et contribue significativement au PIB national, fait face à des dé-
fis multidimensionnels qui freinent son potentiel de développement et limitent l’amé-
lioration des conditions de vie des agriculteurs.

La fragmentation de l’information agricole représente l’un des obstacles majeurs.
Les agriculteurs camerounais, particulièrement ceux des zones rurales, ont un accès
limité aux informations essentielles pour optimiser leurs activités. Les données mé-
téorologiques précises et localisées restent largement inaccessibles, forçant les agricul-
teurs à se fier uniquement à leur expérience et aux signes traditionnels pour planifier
leurs activités. Cette situation est exacerbée par l’absence de systèmes centralisés et
accessibles pour diffuser les innovations agricoles, les bonnes pratiques et les alertes
phytosanitaires.

Le changement climatique intensifie la vulnérabilité du secteur agricole camerou-
nais. Les variations imprévisibles des précipitations, l’augmentation de la fréquence
des événements climatiques extrêmes et les modifications des cycles saisonniers tra-
ditionnels perturbent profondément les calendriers agricoles établis. Les agriculteurs
du Nord et de l’Extrême-Nord font face à des sécheresses plus fréquentes et sévères,
tandis que ceux du Littoral et du Sud-Ouest subissent des inondations dévastatrices.
Cette variabilité climatique croissante rend obsolètes de nombreuses pratiques tradi-
tionnelles et nécessite une adaptation rapide que la plupart des agriculteurs peinent à
réaliser faute d’information et de moyens.

19

20

La gestion inefficace des ressources constitue un autre défi critique. L’utilisation
non optimale de l’eau, des engrais et des pesticides entraîne non seulement des coûts
de production élevés mais aussi une dégradation environnementale préoccupante. Les
sols, surexploités et mal entretenus, perdent progressivement leur fertilité. L’absence
de conseils personnalisés sur la gestion des intrants conduit à des pratiques inadaptées
qui compromettent la durabilité des exploitations agricoles.

Les pertes post-récolte et la volatilité des marchés affectent gravement la rentabi-
lité des exploitations. Sans accès aux informations sur les prix du marché, les tendances
de la demande et les opportunités de commercialisation, les agriculteurs vendent sou-
vent leurs produits à perte ou manquent des opportunités lucratives. L’absence de sys-
tèmes de prévision économique adaptés au contexte local empêche une planification
stratégique des cultures en fonction de la demande du marché.

La prévalence desmaladies et ravageurs représente une menace constante pour la
productivité agricole. La pourriture brune du cacao dans les régions du Centre et du
Sud, le flétrissement bactérien du bananier plantain dans le Littoral, ou encore les at-
taques de chenilles légionnaires sur le maïs dans l’Adamaoua causent des pertes consi-
dérables. Le diagnostic tardif ou erroné de ces problèmes phytosanitaires, combiné à
l’utilisation inappropriée de traitements, aggrave les dégâts et augmente les coûts de
production.

Face à ces défis interconnectés, il devient impératif de développer une solution
technologique intégrée qui puisse fournir aux agriculteurs camerounais les outils et
informations nécessaires pour transformer leurs pratiques agricoles, améliorer leur
productivité et assurer la durabilité de leurs exploitations.

2.1.2 Objectifs du système multi-agents

Le système multi-agents Agriculture Cameroun a été conçu avec une vision am-
bitieuse : démocratiser l’accès aux technologies agricoles modernes pour tous les
agriculteurs camerounais, des petits exploitants aux grandes coopératives, en créant
un écosystème intelligent qui combine l’expertise locale avec la puissance de l’intelli-
gence artificielle.

L’objectif principal du système est de créer un assistant agricole intelligent et ac-
cessible qui agit comme un conseiller personnel pour chaque agriculteur. Ce système
vise à combler le fossé entre les connaissances agricoles de pointe et les pratiques sur
le terrain, en fournissant des recommandations personnalisées, contextualisées et ac-
tionnables. L’approche multi-agents permet de décomposer la complexité du domaine
agricole en expertises spécialisées tout en maintenant une cohérence globale dans les
conseils fournis.

Le système poursuit plusieurs objectifs spécifiques interconnectés. Il vise d’abord
à améliorer la prise de décision agricole en fournissant aux agriculteurs des informations
précises et opportunes sur tous les aspects de leur activité. Cela inclut des prévisions
météorologiques localisées permettant une planification optimale des activités agri-

Mbassi Ewolo Loic Aron

21

coles, des recommandations de cultures adaptées aux conditions spécifiques de chaque
exploitation, et des conseils sur les meilleures pratiques culturales basées sur les der-
nières recherches agronomiques adaptées au contexte camerounais.

Un autre objectif crucial est la réduction des pertes agricoles à travers un système de
détection précoce et de diagnostic précis des problèmes. Le système permet l’iden-
tification rapide des maladies et ravageurs, propose des stratégies de traitement ap-
propriées privilégiant les méthodes durables, et offre des conseils préventifs pour mi-
nimiser les risques futurs. Cette approche proactive contribue significativement à la
sécurisation des récoltes et à l’amélioration des rendements.

L’optimisation économique des exploitations constitue un pilier fondamental du sys-
tème. En fournissant des analyses de marché en temps réel, des calculs de rentabilité
précis et des stratégies de commercialisation adaptées, le système aide les agriculteurs
à maximiser leurs revenus tout en minimisant leurs coûts de production. L’intégra-
tion d’informations économiques permet une planification stratégique des cultures en
fonction des opportunités du marché.

Le système vise également à promouvoir une agriculture durable et respectueuse de
l’environnement. En optimisant l’utilisation des ressources naturelles, en recomman-
dant des pratiques de conservation des sols et en favorisant l’adoption de techniques
agroécologiques, le système contribue à la préservation de l’environnement pour les
générations futures. Cette approche durable est essentielle face aux défis du change-
ment climatique et de la dégradation environnementale.

L’accessibilité et l’inclusivité sont au cœur de la conception du système. En utilisant
le langage naturel et en s’adaptant au niveau de connaissance de chaque utilisateur,
le système s’assure que même les agriculteurs ayant une éducation formelle limitée
peuvent bénéficier de conseils experts. La prise en compte des langues locales et des
pratiques traditionnelles garantit une adoption large et efficace de la technologie.

2.1.3 Bénéficiaires et impact attendu

Le système Agriculture Cameroun a été conçu pour servir un large éventail de
bénéficiaires dans l’écosystème agricole camerounais, avec des impacts spécifiques
adaptés aux besoins de chaque groupe.

Les petits exploitants agricoles constituent le groupe de bénéficiaires prioritaire.
Ces agriculteurs, qui cultivent généralement moins de 5 hectares et représentent la
majorité des producteurs camerounais, bénéficieront d’un accès sans précédent à des
conseils agricoles personnalisés. Pour eux, le système représente un changement pa-
radigmatique, transformant des pratiques souvent basées uniquement sur la tradition
en approches éclairées par des données scientifiques adaptées à leur contexte local.
L’impact attendu inclut une augmentation significative des rendements grâce à l’op-
timisation des pratiques culturales, une réduction des pertes dues aux maladies et
ravageurs grâce au diagnostic précoce, et une amélioration des revenus grâce à une
meilleure compréhension des marchés et des opportunités de commercialisation.

Mbassi Ewolo Loic Aron

22

Les agriculteurs commerciaux et les coopératives trouveront dans le système un
outil puissant pour optimiser leurs opérations à grande échelle. Pour ces acteurs, l’im-
pact se traduira par une planification plus précise des activités agricoles basée sur des
prévisions météorologiques fiables, une gestion optimisée des ressources permettant
des économies substantielles, et une capacité accrue à anticiper et répondre aux de-
mandes du marché. Le système leur permettra également de standardiser les bonnes
pratiques au sein de leurs organisations et d’améliorer la traçabilité de leurs produc-
tions.

Les jeunes agriculteurs et entrepreneurs agricoles représentent un groupe parti-
culièrement important pour l’avenir de l’agriculture camerounaise. Pour cette généra-
tion technophile, le système offre une interface moderne et intuitive qui rend l’agri-
culture plus attractive et professionnelle. L’impact attendu comprend une augmenta-
tion de l’intérêt des jeunes pour les carrières agricoles, le développement de nouvelles
entreprises agricoles innovantes, et l’émergence d’une nouvelle génération d’agricul-
teurs combinant savoir traditionnel et technologies modernes.

Les agents de vulgarisation agricole et conseillers techniques verront leur travail
transformé et amplifié par le système. Au lieu de remplacer ces professionnels essen-
tiels, le système agit comme un multiplicateur de force, leur permettant d’atteindre
et d’assister un nombre beaucoup plus important d’agriculteurs. L’impact pour ce
groupe inclut une amélioration de l’efficacité de leurs interventions, un accès à des
informations actualisées pour enrichir leurs conseils, et la possibilité de se concentrer
sur les cas complexes nécessitant une expertise humaine spécialisée.

Les institutions gouvernementales et organisations de développement bénéficie-
ront d’un outil puissant pour la mise en œuvre et le suivi de leurs programmes agri-
coles. Le système peut collecter des données anonymisées sur les pratiques agricoles,
les défis rencontrés et les tendances émergentes, fournissant ainsi des insights précieux
pour l’élaboration de politiques agricoles basées sur des données réelles. L’impact at-
tendu comprend une meilleure allocation des ressources publiques, une évaluation
plus précise de l’impact des interventions, et une capacité accrue à répondre rapide-
ment aux crises agricoles.

L’impact sociétal global du système s’étend bien au-delà des bénéficiaires directs.
En améliorant la productivité agricole et les revenus des agriculteurs, le système contri-
bue à la réduction de la pauvreté rurale et à l’amélioration de la sécurité alimentaire natio-
nale. La promotion de pratiques agricoles durables contribue à la préservation de l’envi-
ronnement et à l’adaptation au changement climatique. L’amélioration de l’attractivité
du secteur agricole pour les jeunes contribue à réduire l’exode rural et à dynamiser les
économies locales. Enfin, en démocratisant l’accès à l’information agricole, le système
contribue à réduire les inégalités entre les différentes régions et catégories d’agriculteurs.

Mbassi Ewolo Loic Aron

23

2.2 Architecture du Système

2.2.1 Vue d’ensemble de l’architecture

L’architecture du système Agriculture Cameroun repose sur une conception mo-
dulaire et distribuée qui maximise la flexibilité, la scalabilité et la maintenabilité. Cette
architecture multi-agents orchestrée reflète la complexité du domaine agricole tout en
offrant une interface unifiée et cohérente aux utilisateurs finaux.

Au cœur de l’architecture se trouve un modèle d’orchestration hiérarchique hy-
bride qui combine les avantages d’une coordination centralisée avec l’autonomie des
agents spécialisés. Cette approche permet une gestion efficace des requêtes complexes
nécessitant l’expertise de plusieurs domaines tout en maintenant la réactivité néces-
saire pour les requêtes simples. L’architecture est conçue pour être résiliente, avec des
mécanismes de fallback et de récupération d’erreurs à chaque niveau.

La couche d’interface utilisateur constitue le point d’entrée unique du système.
Elle accepte les requêtes en langage naturel, maintient le contexte conversationnel et
présente les réponses de manière claire et actionnable. Cette couche utilise les capaci-
tés de traitement du langage naturel de Google ADK pour comprendre les nuances et
les intentions des utilisateurs, qu’ils s’expriment en français, en anglais ou même en
mélangeant les langues comme c’est souvent le cas au Cameroun.

L’Agent Coordinateur Principal agit comme le chef d’orchestre du système. Il ana-
lyse chaque requête utilisateur pour identifier les domaines d’expertise nécessaires,
décompose les requêtes complexes en sous-tâches spécialisées, et coordonne les inter-
actions entre les différents agents. Cet agent maintient une vue d’ensemble de chaque
session utilisateur, assurant la cohérence des réponses même lorsque plusieurs agents
contribuent à la solution.

La couche des agents spécialisés comprend cinq agents experts, chacun respon-
sable d’un domaine crucial de l’agriculture. Ces agents fonctionnent de manière semi-
autonome, capables de traiter des requêtes dans leur domaine d’expertise tout en col-
laborant avec leurs pairs lorsque nécessaire. Chaque agent maintient sa propre base de
connaissances, ses outils spécialisés et ses stratégies de raisonnement adaptées à son
domaine.

La couche de données et de services fournit l’infrastructure nécessaire au fonction-
nement des agents. Elle inclut des bases de données locales contenant des informations
spécifiques au Cameroun (calendriers agricoles, variétés locales, prix du marché), des
connexions à des services externes pour les données en temps réel (météo, marchés),
et des outils de traitement et d’analyse adaptés aux besoins de chaque agent. Cette
couche assure également la persistance des données et la gestion des sessions utilisa-
teur.

L’architecture intègre des mécanismes de communication inter-agents sophisti-
qués basés sur les principes FIPA-ACL mais adaptés au contexte moderne d’ADK. Les
agents peuvent échanger des informations structurées, négocier des priorités, et colla-

Mbassi Ewolo Loic Aron

24

borer pour résoudre des problèmes complexes. Le système de messages asynchrones
permet aux agents de travailler en parallèle, améliorant significativement les temps de
réponse pour les requêtes complexes.

La gestion de la cohérence et de la qualité est assurée à plusieurs niveaux. L’Agent
Coordinateur vérifie la cohérence des réponses des différents agents, résout les conflits
potentiels et synthétise les informations en une réponse unifiée. Des mécanismes de
validation croisée permettent aux agents de vérifier mutuellement leurs recommanda-
tions, particulièrement important lorsque des conseils de différents domaines peuvent
avoir des implications contradictoires.

2.2.2 Les 5 agents spécialisés

Agent Météorologique

L’Agent Météorologique constitue le pilier environnemental du système, fournis-
sant des informations climatiques précises et contextualisées essentielles à la prise de
décision agricole. Cet agent va bien au-delà de la simple provision de prévisions mé-
téo, offrant une analyse approfondie des implications climatiques pour les activités
agricoles spécifiques.

L’agent maintient une compréhension sophistiquée desmicroclimats camerounais, re-
connaissant que les conditions peuvent varier significativement même au sein d’une
même région. Il intègre des données provenant de multiples sources incluant les ser-
vices météorologiques nationaux, les données satellitaires, et lorsque disponibles, les
stations météo locales. Cette approche multi-source permet de fournir des prévisions
d’une précision remarquable, adaptées aux besoins spécifiques de chaque exploitation.

Les capacités de l’agent incluent la fourniture de prévisions à court, moyen et long
terme avec des niveaux de détail adaptés aux besoins agricoles. Pour le court terme (1-7
jours), l’agent fournit des prévisions horaires incluant température, précipitations, hu-
midité, vitesse du vent et ensoleillement. Ces informations détaillées permettent aux
agriculteurs de planifier précisément leurs activités quotidiennes comme les semis,
l’application de pesticides ou la récolte. Pour le moyen terme (1-4 semaines), l’agent
analyse les tendances climatiques et leur impact probable sur les différents stades de
développement des cultures. Les prévisions saisonnières permettent une planification
stratégique des cultures et des investissements.

L’agent excelle dans la génération d’alertes climatiques proactives. Il surveille en per-
manence les conditions météorologiques pour détecter les événements potentiellement
dommageables comme les sécheresses, les inondations, les vents violents ou les varia-
tions extrêmes de température. Ces alertes sont personnalisées selon les cultures spé-
cifiques de chaque agriculteur et leur stade de développement, permettant des actions
préventives ciblées.

Une fonctionnalité particulièrement innovante est la capacité de l’agent à fournir
des recommandations agricoles basées sur les conditions météorologiques. Par exemple, il
peut conseiller de retarder les semis si des pluies importantes sont prévues, suggé-

Mbassi Ewolo Loic Aron

25

rer une irrigation supplémentaire pendant les périodes de stress hydrique anticipé,
ou recommander la récolte précoce pour éviter des dommages dus à des intempéries
prévues. Ces recommandations intègrent les spécificités des différentes cultures et les
pratiques locales.

L’agent maintient également une base de données historique des conditions clima-
tiques, permettant des analyses de tendances et des comparaisons avec les années pré-
cédentes. Cette perspective historique est cruciale pour comprendre les changements
climatiques locaux et adapter les stratégies agricoles à long terme. L’agent peut ainsi
identifier des modifications dans les patterns de précipitation ou de température et
suggérer des adaptations appropriées.

Agent Cultures

L’AgentCultures représente l’expert agronomique du système, possédant une connais-
sance approfondie des pratiques culturales adaptées au contexte camerounais. Cet
agent combine les dernières recherches agronomiques avec la sagesse des pratiques
traditionnelles locales pour fournir des conseils culturaux optimaux.

L’agent maintient une base de connaissances exhaustive sur les principales cultures
camerounaises incluant les cultures de rente (cacao, café, coton, palmier à huile), les
cultures vivrières (maïs, manioc, plantain, igname, arachide) et les cultures maraî-
chères. Pour chaque culture, l’agent connaît les variétés adaptées à chaque région,
les exigences pédoclimatiques, les calendriers culturaux optimaux, les techniques de
culture recommandées et les rendements potentiels selon les conditions.

Une capacité clé de l’agent est la génération de calendriers culturaux personnalisés.
En intégrant les informations sur la localisation spécifique de l’exploitation, le type de
sol, les conditions climatiques prévues (via l’Agent Météorologique) et les objectifs de
l’agriculteur, l’agent produit des calendriers détaillés couvrant toutes les opérations
culturales de la préparation du sol à la récolte. Ces calendriers incluent les dates opti-
males pour chaque opération, les techniques recommandées et les points d’attention
critiques.

L’agent excelle dans la recommandation de systèmes de culture intégrés. Il ne se limite
pas à conseiller sur des cultures individuelles mais propose des systèmes complets
incluant les rotations culturales pour maintenir la fertilité du sol, les associations de
cultures pour maximiser l’utilisation de l’espace et réduire les risques, les cultures de
couverture pour la protection et l’enrichissement du sol, et l’intégration de l’agrofores-
terie pour la durabilité à long terme.

La sélection variétale adaptative constitue une autre force de l’agent. Il recommande
les variétés les plus appropriées en considérant non seulement les conditions environ-
nementales mais aussi les préférences du marché, la résistance aux maladies locales, la
durée du cycle cultural et les ressources disponibles de l’agriculteur. Cette approche
holistique assure que les recommandations sont non seulement techniquement valides
mais aussi pratiquement réalisables et économiquement viables.

Mbassi Ewolo Loic Aron

26

L’agent fournit également des conseils techniques détaillés pour chaque étape du cycle
cultural. Cela inclut les techniques de préparation du sol adaptées au type de sol et à
la culture, les méthodes de semis ou plantation optimales, les pratiques d’entretien
incluant le désherbage et la fertilisation, et les techniques de récolte et de post-récolte
pour minimiser les pertes et maximiser la qualité.

Agent Santé des Plantes

L’Agent Santé des Plantes agit comme le phytopathologiste et l’entomologiste du
système, spécialisé dans l’identification, la prévention et le traitement des problèmes
sanitaires affectant les cultures. Cet agent combine des capacités de diagnostic sophis-
tiquées avec une connaissance approfondie des solutions adaptées au contexte came-
rounais.

L’agent possède une expertise diagnostique couvrant les principales maladies et ra-
vageurs affectant les cultures camerounaises. Sa base de connaissances inclut les mala-
dies fongiques comme la pourriture brune du cacao, la cercosporiose du bananier ou
la rouille du café, les maladies bactériennes et virales spécifiques à chaque culture, les
ravageurs majeurs depuis les insectes jusqu’aux nématodes, et les troubles physiolo-
giques causés par des carences nutritionnelles ou des stress environnementaux.

La capacité de diagnostic différentiel de l’agent est particulièrement sophistiquée. À
partir de descriptions de symptômes fournis par l’agriculteur, l’agent peut analyser
les patterns de symptômes pour identifier les causes probables, différencier entre pro-
blèmes similaires (par exemple, distinguer une carence en azote d’une attaque de né-
matodes), considérer les conditions environnementales et l’historique cultural pour af-
finer le diagnostic, et proposer des examens complémentaires si nécessaire pour confir-
mer le diagnostic.

L’agent excelle dans la proposition de stratégies de traitement intégrées. Plutôt que de
recommander systématiquement des pesticides chimiques, l’agent privilégie une ap-
proche de gestion intégrée incluant des méthodes culturales (rotation, variétés résis-
tantes, gestion des résidus), des contrôles biologiques utilisant des ennemis naturels
ou des biopesticides, des traitements chimiques seulement lorsque nécessaire, avec
des recommandations précises sur les produits, doses et périodes d’application, et des
mesures préventives pour éviter la récurrence des problèmes.

Une fonctionnalité innovante est le système d’alerte préventive de l’agent. En analy-
sant les conditions environnementales (via l’Agent Météorologique), l’historique des
problèmes dans la région et le stade de développement des cultures, l’agent peut pré-
dire les risques phytosanitaires et alerter proactivement les agriculteurs. Par exemple,
il peut avertir d’un risque élevé de mildiou suite à des conditions d’humidité prolon-
gée ou d’une probable invasion de chenilles légionnaires basée sur les patterns de
migration observés.

L’agent maintient également une pharmacopée locale incluant les traitements tradi-
tionnels efficaces. Reconnaissant que de nombreux agriculteurs camerounais utilisent

Mbassi Ewolo Loic Aron

27

des méthodes traditionnelles, l’agent valide scientifiquement ces pratiques et les in-
tègre dans ses recommandations lorsqu’elles sont efficaces. Cette approche respec-
tueuse des savoirs locaux facilite l’adoption des conseils et promeut des solutions ac-
cessibles et durables.

Agent Économique

L’Agent Économique sert d’analyste financier et de conseiller commercial pour
les agriculteurs, les aidant à transformer leurs exploitations en entreprises rentables
et durables. Cet agent combine une compréhension profonde des marchés agricoles
camerounais avec des outils d’analyse financière sophistiqués.

L’agent maintient une veille permanente des marchés agricoles à travers le Cameroun. Il
collecte et analyse les prix des produits agricoles dans les principaux marchés urbains
et ruraux, suit les tendances de l’offre et de la demande pour chaque culture, monitore
les fluctuations saisonnières et identifie les opportunités de marché émergentes. Cette
intelligence de marché en temps réel permet aux agriculteurs de prendre des décisions
de commercialisation éclairées.

La capacité d’analyse de rentabilité de l’agent est particulièrement précieuse pour
la planification agricole. L’agent peut calculer les coûts de production détaillés pour
chaque culture, incluant tous les intrants, la main d’œuvre et les coûts indirects, pro-
jeter les revenus basés sur les rendements attendus et les prix du marché, analyser la
rentabilité comparative de différentes options culturales, et fournir des analyses de
sensibilité montrant comment la rentabilité varie avec les changements de prix ou de
rendement.

L’agent excelle dans la fourniture de stratégies de commercialisation adaptées. Il peut
recommander les meilleurs moments pour vendre en analysant les patterns de prix
saisonniers, identifier les marchés les plus profitables accessibles à l’agriculteur, sug-
gérer des stratégies de stockage lorsque les prix post-récolte sont bas, et proposer des
options de transformation ou de valeur ajoutée pour augmenter les revenus.

Une fonctionnalité unique est la capacité de l’agent à fournir des conseils de gestion
financière agricole. Reconnaissant que de nombreux agriculteurs ont une éducation fi-
nancière limitée, l’agent peut expliquer les concepts de base de la gestion financière en
termes simples, aider à la planification budgétaire saisonnière et annuelle, conseiller
sur l’épargne et l’investissement pour le développement de l’exploitation, et fournir
des informations sur les options de crédit agricole disponibles.

L’agent intègre également une dimension de gestion des risques. Il peut identifier et
quantifier les principaux risques économiques (volatilité des prix, pertes de récolte),
proposer des stratégies de diversification pour réduire les risques, informer sur les
options d’assurance agricole disponibles, et conseiller sur la constitution de réserves
financières pour les périodes difficiles.

Mbassi Ewolo Loic Aron

28

Agent Ressources

L’Agent Ressources optimise l’utilisation des ressources naturelles et des intrants
agricoles, promouvant une agriculture à la fois productive et durable. Cet agent com-
bine expertise technique en gestion des ressources avec une compréhension profonde
des contraintes et opportunités locales.

L’agent possède une expertise approfondie en gestion de la fertilité des sols. Il peut in-
terpréter les résultats d’analyses de sol ou estimer la fertilité basée sur les indicateurs
disponibles, recommander des programmes de fertilisation équilibrés et économiques,
conseiller sur l’utilisation d’engrais organiques localement disponibles (compost, fu-
mier, résidus de récolte), et proposer des stratégies de restauration pour les sols dégra-
dés. L’approche de l’agent privilégie le maintien à long terme de la santé du sol plutôt
que la maximisation à court terme des rendements.

La gestion optimale de l’eau constitue une priorité critique de l’agent, particulière-
ment importante face au changement climatique. L’agent peut calculer les besoins en
eau spécifiques de chaque culture selon son stade de développement, recommander
des techniques d’irrigation efficientes adaptées aux ressources disponibles, conseiller
sur la collecte et le stockage de l’eau de pluie, et proposer des pratiques de conserva-
tion de l’humidité du sol (paillage, cultures de couverture). Dans les régions sèches
du Nord, l’agent propose des stratégies spécifiques d’adaptation à la sécheresse.

L’agent excelle dans la promotion de l’agriculture de conservation. Il recommande
des pratiques qui maintiennent la couverture du sol, minimisent la perturbation mé-
canique et diversifient les rotations culturales. Ces recommandations sont adaptées
aux conditions spécifiques de chaque exploitation, considérant les contraintes de main
d’œuvre, d’équipement et les traditions locales. L’agent peut expliquer les bénéfices à
long terme de ces pratiques même si elles peuvent initialement sembler contre-intuitives.

Une capacité distinctive de l’agent est son expertise en intégration agriculture-élevage.
Reconnaissant que de nombreuses exploitations camerounaises combinent cultures et
élevage, l’agent peut optimiser ces synergies en recommandant l’utilisation efficace
des résidus de culture pour l’alimentation animale, la gestion optimale du fumier pour
la fertilisation, l’intégration de cultures fourragères dans les rotations, et l’utilisation
d’animaux pour le travail du sol où approprié.

L’agent maintient également une base de données des ressources locales disponibles
pour les agriculteurs. Cela inclut les fournisseurs d’intrants agricoles dans chaque
région, les sources de matériel végétal de qualité (semences, plants), les services de
mécanisation disponibles, et les programmes d’appui gouvernementaux ou des ONG.
Cette information pratique aide les agriculteurs à accéder aux ressources nécessaires
pour implémenter les recommandations du système.

2.2.3 Agent coordinateur principal

L’Agent Coordinateur Principal représente le cerveau central du système Agri-
culture Cameroun, orchestrant l’ensemble des interactions et assurant la cohérence

Mbassi Ewolo Loic Aron

29

globale des services fournis aux agriculteurs. Cet agent incarne l’intelligence collec-
tive du système, transformant la complexité technique en simplicité d’utilisation pour
l’utilisateur final.

La fonction première de l’Agent Coordinateur est l’analyse et la compréhension des
requêtes utilisateur. Cet agent déploie des capacités avancées de traitement du langage
naturel pour décoder non seulement le contenu explicite des questions mais aussi les
intentions sous-jacentes, le contexte implicite et les besoins non exprimés. Cette ana-
lyse profonde permet d’identifier avec précision les domaines d’expertise nécessaires
et de formuler une stratégie de résolution optimale.

L’Agent Coordinateur excelle dans la décomposition des requêtes complexes en sous-
tâches gérables. Face à une question multi-dimensionnelle comme ”Mon cacao a des
taches brunes et je me demande si je dois traiter maintenant vu les prévisions météo et
les prix actuels du marché”, l’agent identifie instantanément les trois dimensions du
problème : phytosanitaire, météorologique et économique. Il formule alors des sous-
requêtes spécifiques pour chaque agent spécialisé, en veillant à capturer toutes les
interdépendances entre les différents aspects.

La coordination des agents spécialisés représente une fonction critique où l’Agent Co-
ordinateur démontre sa sophistication. Il ne se contente pas de router les requêtes vers
les agents appropriés mais orchestre véritablement leur collaboration. Il établit des
priorités dynamiques basées sur l’urgence et l’importance de chaque aspect, gère les
dépendances entre les réponses des différents agents, et facilite l’échange d’informa-
tions contextuelles entre agents pour enrichir leurs analyses respectives. Cette coordi-
nation permet des synergies impossibles dans un système où les experts travailleraient
en silos.

L’agent maintient une mémoire contextuelle sophistiquée qui enrichit chaque interac-
tion. Cette mémoire capture non seulement l’historique des conversations avec chaque
utilisateur mais aussi les caractéristiques de leur exploitation, leurs préférences, leurs
contraintes et leurs objectifs à long terme. Cette contextualisation permet des réponses
de plus en plus personnalisées et pertinentes au fil des interactions, créant une expé-
rience d’apprentissage mutuel entre le système et l’utilisateur.

La synthèse et l’harmonisation des réponses constituent l’une des contributions les plus
visibles de l’Agent Coordinateur. Lorsque plusieurs agents fournissent des éléments
de réponse, l’agent ne se contente pas de les juxtaposer mais les intègre en une ré-
ponse cohérente et actionnnable. Il résout les éventuelles contradictions en appliquant
des règles de priorité contextuelles, identifie et met en évidence les synergies entre
les différentes recommandations, et structure la réponse finale de manière logique et
progressive, facilitant la compréhension et l’action.

L’Agent Coordinateur implémente également desmécanismes d’apprentissage continu
qui améliorent progressivement la qualité du service. Il analyse les patterns de re-
quêtes pour identifier les besoins émergents, évalue l’efficacité des réponses fournies
à travers les feedbacks implicites et explicites, et ajuste ses stratégies de coordination
pour optimiser les performances globales du système. Cette capacité d’adaptation per-

Mbassi Ewolo Loic Aron

30

met au système de rester pertinent face à l’évolution des besoins et des contextes agri-
coles.

2.2.4 Diagramme d’architecture

FIGURE 2.1 –Architecture multi-agents du système Agriculture Cameroun avec flux de communication

Le diagramme d’architecture présenté dans la Figure 2.1 illustre l’organisation hié-
rarchique du système Agriculture Cameroun selon une structure en arbre descendant.
Au sommet, l’Agriculteur représente l’utilisateur final du système, point d’entrée unique
pour toutes les interactions.

L’Interface Web constitue la couche de présentation, elle traduit les requêtes utili-
sateur en formats structurés et présente les réponses des agents de manière claire et
actionnable. Son positionnement direct sous l’utilisateur illustre son rôle de pont entre
l’humain et le système multi-agents.

L’Agent Principal Coordinateur occupe une position centrale stratégique dans l’ar-
chitecture. Représenté par l’icône robot, il incarne le cerveau du système, responsable
de l’orchestration de tous les agents spécialisés. Les connexions directes descendantes
vers les cinq agents spécialisés illustrent sa capacité de routage intelligent et de coor-
dination des requêtes complexes.

Les cinq agents spécialisés sont organisés horizontalement sous l’Agent Principal,
chacun identifié par une icône métier distinctive. L’Agent Météorologique gère les pré-

Mbassi Ewolo Loic Aron

31

visions et analyses climatiques. L’Agent Cultures traite les questions liées aux variétés,
plantations et cycles agricoles. L’Agent Santé des Plantes se spécialise dans le diag-
nostic et le traitement des maladies. L’Agent Économique analyse la rentabilité et les
tendances de marché. L’Agent Ressources optimise la gestion de l’eau, du sol et des
intrants.

La couche externe du diagramme présente l’écosystème de données et services.
Chaque agent spécialisé maintient des connexions dédiées vers ses sources d’informa-
tion : l’Agent Météorologique se connecte à l’OpenWeather API, l’Agent Économique
aux Market Data API , tandis que les autres agents accèdent à des bases de données
spécialisées représentées par des cylindres : Base Maladies, Base Cultures , et Soil Data
API .

L’intégration du LLM Gemini constitue un élément architectural innovant. Connecté
à l’Agent Principal et aux cinq agents spécialisés, Gemini enrichit le système de ca-
pacités de traitement du langage naturel et de raisonnement avancé, permettant des
analyses contextuelles sophistiquées et des réponses en langage naturel.

2.3 Scénarios d’Interaction

2.3.1 Cas d’usage : Consultation météorologique

Le scénario de consultation météorologique illustre parfaitement la valeur ajoutée
du système multi-agents dans la transformation d’une simple requête d’information
en conseil agricole actionnable. Considérons le cas de Mama Félicité, une productrice
de tomates de la région du Centre, qui s’inquiète des pluies annoncées pour la semaine
alors que ses tomates approchent de la maturité.

Mama Félicité formule sa requête en langage naturel, mélangeant français et ex-
pressions locales comme c’est courant : ”Mes tomates go bientôt mûrir, est-ce que les
pluies de cette semaine vont gâter ma récolte ?”. L’interface utilisateur capture cette re-
quête et la transmet à l’Agent Coordinateur Principal qui immédiatement identifie la
nature composite de la question, impliquant des aspects météorologiques, culturaux
et potentiellement économiques.

L’Agent Coordinateur décompose intelligemment la requête en plusieurs sous-questions.
Il sollicite d’abord l’Agent Météorologique pour obtenir les prévisions détaillées de la
semaine, avec une attention particulière sur l’intensité et la durée des précipitations
prévues. Simultanément, il interroge l’Agent Cultures sur le stade de maturité des to-
mates et leur vulnérabilité aux pluies à ce stade. Anticipant les besoins de Mama Fé-
licité, il consulte également l’Agent Économique sur l’évolution probable des prix des
tomates dans les jours à venir.

L’Agent Météorologique analyse les données disponibles et fournit une réponse
nuancée. Les prévisions indiquent des pluies modérées à fortes pendant trois jours à
partir de jeudi, avec des accalmies en matinée. L’agent ne se contente pas de fournir ces
données brutes mais les contextualise pour l’agriculture, notant que l’intensité prévue

Mbassi Ewolo Loic Aron

32

présente un risque significatif pour les tomates mûres exposées.
L’Agent Cultures, informé du stade de maturité des tomates, évalue les risques spé-

cifiques. Les tomates proches de la maturité sont particulièrement vulnérables à l’écla-
tement et aux maladies fongiques en cas de pluies intenses. L’agent calcule qu’environ
40% de la récolte pourrait être affectée si aucune mesure n’est prise, mais propose plu-
sieurs stratégies d’atténuation incluant la récolte anticipée des fruits les plus mûrs,
l’installation de bâches protectrices sur les plants les plus exposés, et l’application pré-
ventive de fongicides biologiques.

L’Agent Économique apporte une dimension stratégique cruciale en analysant les
tendances du marché. Les prix actuels sont stables mais pourraient augmenter de 15-20
après les pluies en raison des pertes anticipées chez d’autres producteurs. Cependant,
les tomates récoltées légèrement avant maturité complète se vendront 10% moins cher.
L’agent fournit une analyse coût-bénéfice détaillée des différentes options.

L’Agent Coordinateur Principal synthétise ces informations en une réponse cohé-
rente et actionnnable pour Mama Félicité. La recommandation finale suggère une stra-
tégie mixte : récolter immédiatement 60% des tomates les plus mûres pour les vendre
au prix actuel, protéger 30% des plants avec des bâches pour une récolte post-pluie à
prix premium, et accepter un risque calculé sur les 10% restants. Cette stratégie opti-
mise le revenu total tout en minimisant les pertes potentielles.

La réponse inclut également un calendrier d’action détaillé : mardi et mercredi
pour la récolte sélective et la vente, mercredi soir pour l’installation des protections,
et jeudi matin pour l’application de traitements préventifs. Le système programme
même des rappels pour chaque action et propose un suivi post-pluie pour évaluer
l’état des plants protégés.

2.3.2 Cas d’usage : Diagnostic de maladie

Le diagnostic de maladie représente l’un des scénarios les plus critiques où le sys-
tème démontre sa capacité à potentiellement sauver des récoltes entières. Prenons
l’exemple de Papa Jean, un producteur de cacao de la région du Sud, qui observe avec
inquiétude des taches brunes suspectes sur ses cabosses accompagnées d’un flétrisse-
ment inhabituel de certaines branches.

Papa Jean décrit ses observations au système : ”J’ai des taches marron sur mes
cabosses de cacao et certaines branches commencent à sécher. Ça a commencé il y a
une semaine après les fortes pluies”. Cette description, bien que simple, contient plu-
sieurs indices diagnostiques que l’Agent Coordinateur Principal identifie immédiate-
ment comme nécessitant une investigation approfondie.

L’Agent Santé des Plantes prend immédiatement le lead sur cette requête, initiant
un processus de diagnostic différentiel sophistiqué. L’agent commence par analyser les
symptômes décrits en les comparant à sa base de données extensive de maladies du
cacao. La combinaison de taches brunes sur cabosses et de dessèchement de branches,
particulièrement après des pluies intenses, évoque plusieurs possibilités incluant la

Mbassi Ewolo Loic Aron

33

pourriture brune (Phytophthora), les attaques de mirides, ou potentiellement une
combinaison de problèmes.

Pour affiner le diagnostic, l’Agent Santé des Plantes engage un dialogue interactif
avec Papa Jean, posant des questions ciblées sur la localisation des taches (base, mi-
lieu ou sommet des cabosses), leur évolution (croissance rapide ou lente), la présence
d’exsudats ou de sporulation, et l’étendue du problème dans la plantation. Chaque
réponse permet à l’agent d’ajuster ses hypothèses diagnostiques en temps réel.

Parallèlement, l’Agent Météorologique est consulté pour analyser les conditions
climatiques récentes. L’agent confirme que les conditions d’humidité élevée et de tem-
pérature modérée des deux dernières semaines ont créé un environnement optimal
pour le développement de maladies fongiques, renforçant l’hypothèse de la pourri-
ture brune.

L’Agent Cultures apporte des informations contextuelles cruciales en notant que la
variété de cacao cultivée par Papa Jean est modérément sensible à la pourriture brune
et que la densité de plantation relativement élevée dans sa parcelle peut avoir favorisé
la propagation de la maladie en limitant la circulation d’air.

Après cette analyse multi-dimensionnelle, l’Agent Santé des Plantes établit un diag-
nostic de pourriture brune avec un niveau de confiance de 85%, tout en maintenant
une vigilance sur la possibilité d’une infection secondaire par des mirides profitant de
l’affaiblissement des plants. L’agent propose immédiatement un plan de traitement in-
tégré comprenant des mesures curatives d’urgence et des stratégies préventives à long
terme.

Le plan de traitement immédiat inclut l’élimination et la destruction de toutes
les cabosses infectées pour réduire l’inoculum, l’application d’un fongicide à base de
cuivre avec des instructions précises sur le dosage et la technique d’application, et
l’amélioration urgente du drainage dans les zones les plus affectées. L’Agent Écono-
mique est sollicité pour calculer le coût de ces interventions et confirmer leur viabilité
économique compte tenu de la valeur de la récolte à sauver.

Pour le long terme, le système recommande un programme de gestion intégrée
incluant la taille sanitaire pour améliorer l’aération, l’introduction progressive de va-
riétés plus résistantes, et un calendrier de traitements préventifs aligné sur les périodes
à risque identifiées par l’Agent Météorologique. L’Agent Ressources contribue en sug-
gérant des amendements du sol pour renforcer la résistance naturelle des plants.

Le système ne s’arrête pas à la fourniture de recommandations mais établit un pro-
tocole de suivi. Des rappels sont programmés pour vérifier l’évolution de la situation,
et Papa Jean est invité à fournir des mises à jour régulières permettant d’ajuster le trai-
tement si nécessaire. Cette approche itérative assure une gestion optimale de la crise
phytosanitaire.

Mbassi Ewolo Loic Aron

34

2.3.3 Cas d’usage : Analyse économique

L’analyse économique représente un domaine où le système multi-agents trans-
forme des données complexes en insights stratégiques accessibles. Illustrons cela avec
le cas de la Coopérative des Planteurs Unis de Bafoussam, qui envisage de diversifier
sa production actuellement centrée sur le café arabica vers l’inclusion de cultures ma-
raîchères pour optimiser ses revenus.

Le président de la coopérative, M. Kamga, soumet une requête complexe au sys-
tème : ”Notre coopérative cultive 50 hectares de café arabica mais les prix fluctuent
beaucoup. Nous pensons à utiliser 10 hectares pour des légumes. Qu’est-ce qui serait
le plus rentable ?”. Cette question apparemment simple cache une complexité considé-
rable nécessitant l’expertise coordonnée de plusieurs agents.

L’Agent Coordinateur Principal reconnaît immédiatement la nature stratégique de
cette requête et mobilise une équipe d’agents pour conduire une analyse complète.
L’Agent Économique prend naturellement le lead mais travaille en étroite collabora-
tion avec les Agents Cultures, Météorologique et Ressources pour fournir une analyse
holistique.

L’Agent Économique commence par analyser la situation actuelle de la coopérative.
Les données historiques montrent que le café arabica a généré des revenus moyens de
2,5 millions FCFA par hectare sur les trois dernières années, avec une volatilité impor-
tante (écart-type de 600,000 FCFA). L’agent identifie que cette volatilité est principa-
lement due aux fluctuations des prix internationaux sur lesquels la coopérative n’a
aucun contrôle.

Pour l’analyse de diversification, l’Agent Économique collabore étroitement avec
l’Agent Cultures pour identifier les options maraîchères les plus prometteuses. L’Agent
Cultures, considérant les conditions agro-climatiques de Bafoussam, la disponibilité
de main-d’œuvre et l’accès aux marchés, recommande trois scénarios de diversifica-
tion : tomates et poivrons en rotation, pommes de terre suivies de choux, ou un mix
de légumes-feuilles à cycle court.

L’Agent Météorologique apporte des insights critiques en analysant les patterns cli-
matiques de Bafoussam et leur évolution probable. Les données montrent que la région
bénéficie de conditions favorables pour le maraîchage avec deux saisons de production
possibles, mais avec des risques de grêle croissants en altitude qui pourraient affecter
certaines cultures.

L’Agent Ressources évalue les implications en termes de besoins en eau, en main-
d’œuvre et en intrants pour chaque scénario. Le maraîchage nécessite une irrigation
plus intensive que le café, mais les infrastructures existantes de la coopérative peuvent
être adaptées. La main-d’œuvre additionnelle nécessaire est estimée et chiffrée.

L’Agent Économique synthétise toutes ces informations dans une analyse finan-
cière détaillée. Pour le scénario tomates-poivrons, les projections montrent un revenu
potentiel de 4,2 millions FCFA par hectare avec une volatilité réduite car basée sur
les marchés locaux. Le scénario pommes de terre-choux offre 3,8 millions FCFA par

Mbassi Ewolo Loic Aron

35

hectare mais avec une meilleure résilience aux aléas climatiques. Le mix de légumes-
feuilles génère 3,5 millions FCFA mais avec l’avantage de revenus réguliers tout au
long de l’année.

L’analyse ne s’arrête pas aux chiffres bruts. L’Agent Économique modélise diffé-
rents scénarios de transition, montrant l’impact de convertir 5, 10 ou 15 hectares sur
les revenus totaux et la stabilité financière de la coopérative. L’analyse de risque montre
que la diversification avec 10 hectares de tomates-poivrons réduirait la volatilité glo-
bale des revenus de 40% tout en augmentant le revenu moyen de 15%.

Le système produit également une feuille de route détaillée pour la mise en œuvre,
incluant le calendrier optimal de transition pour minimiser les perturbations, les inves-
tissements nécessaires en infrastructure et leur période de retour sur investissement,
les besoins en formation pour les membres de la coopérative, et les stratégies de com-
mercialisation pour les nouveaux produits.

L’Agent Coordinateur Principal présente ces résultats sous forme de tableaux com-
paratifs clairs, de graphiques de projection et de recommandations priorisées. La re-
commandation finale suggère une approche progressive : commencer avec 5 hectares
de tomates-poivrons la première année pour tester et affiner le modèle, puis étendre
à 10 hectares si les résultats sont conformes aux projections.

2.3.4 Diagrammes de séquence annotés

FIGURE 2.2 – Diagramme de séquence pour une consultation météorologique complexe

Le diagramme de séquence présenté dans la Figure 2.2 illustre le flux d’interac-
tions pour une consultation météorologique complexe. La séquence commence par
l’utilisateur (représenté par l’icône d’agriculteur) qui formule sa requête en langage
naturel vers l’interface utilisateur. Cette interface, symbolisée par un écran de dialogue,

Mbassi Ewolo Loic Aron

36

effectue une première analyse syntaxique et transmet la requête structurée à l’Agent
Coordinateur Principal.

L’Agent Coordinateur, représenté au centre du diagramme, décompose la requête
en identifiant les différentes dimensions du besoin. Les flèches annotées montrent com-
ment il génère des sous-requêtes spécifiques : une demande de prévisions détaillées
vers l’Agent Météorologique, une requête sur la sensibilité des cultures vers l’Agent
Cultures, et une analyse d’impact économique vers l’Agent Économique.

Les interactions parallèles sont représentées par des barres d’activation simulta-
nées, montrant comment les agents spécialisés travaillent en parallèle pour optimiser
le temps de réponse. L’Agent Météorologique consulte ses sources de données externes
(représentées par des appels asynchrones en pointillés) avant de retourner ses prévi-
sions enrichies.

Les annotations sur les flèches de retour indiquent le type et le contenu des ré-
ponses. L’Agent Météorologique retourne non seulement les données brutes mais aussi
une évaluation des risques. L’Agent Cultures fournit des seuils critiques et des recom-
mandations préventives. L’Agent Économique apporte une analyse coût-bénéfice des
différentes options.

La phase de synthèse est représentée par une boîte d’activation étendue sur l’Agent
Coordinateur, illustrant le processus complexe d’intégration et d’harmonisation des
différentes réponses. Les conflits potentiels et leur résolution sont annotés, montrant
par exemple comment une recommandation de récolte précoce de l’Agent Cultures est
pondérée par l’analyse de prix de l’Agent Économique.

FIGURE 2.3 – Diagramme de séquence pour un diagnostic de maladie avec apprentissage

La Figure 2.3 présente un scénario plus complexe de diagnostic de maladie impli-

Mbassi Ewolo Loic Aron

37

quant des interactions itératives et des mécanismes d’apprentissage. Le diagramme
montre comment l’Agent Santé des Plantes mène l’investigation en sollicitant active-
ment des informations complémentaires.

Les boucles de dialogue sont représentées par des rectangles annotés ”Loop” avec
leurs conditions de sortie. L’Agent Santé des Plantes pose des questions diagnostiques
successives jusqu’à atteindre un niveau de confiance suffisant (>80%) ou épuiser les
questions pertinentes. Chaque itération enrichit le contexte et affine le diagnostic.

Les consultations croisées entre agents sont mises en évidence par des flèches ho-
rizontales entre les lignes de vie des agents. L’Agent Santé consulte l’Agent Météorolo-
gique pour comprendre les conditions favorisant la maladie, et l’Agent Cultures pour
obtenir l’historique cultural et la sensibilité variétale.

Le mécanisme d’apprentissage est représenté par des flèches en retour vers une
base de connaissances (cylindre de données). Après confirmation du diagnostic par
l’utilisateur, le système met à jour ses modèles pour améliorer les futures diagnostics
similaires. Cette rétroaction est annotée comme ”Apprentissage confirmé” avec les pa-
ramètres mis à jour.

FIGURE 2.4 – Diagramme de séquence pour une analyse économique multi-critères

Mbassi Ewolo Loic Aron

38

La Figure 2.4 illustre la complexité d’une analyse économique impliquant tous les
agents du système. Le diagramme met en évidence la nature hautement collaborative
de ce type de requête, avec de multiples allers-retours entre agents pour affiner l’ana-
lyse.

La phase d’initialisation montre l’Agent Économique établissant le contexte d’ana-
lyse en sollicitant des informations de base de tous les autres agents. Cette phase est
représentée par un éventail de flèches partant de l’Agent Économique, chacune anno-
tée avec le type d’information demandée.

Les calculs parallèles sont représentés par des boîtes d’activation simultanées sur
plusieurs agents. Pendant que l’Agent Économique modélise les scénarios financiers,
l’Agent Cultures évalue les implications techniques de chaque option, l’Agent Météo-
rologique analyse les risques climatiques, et l’Agent Ressources calcule les besoins en
intrants.

Les points de synchronisation sont clairement marqués par des lignes horizontales
annotées ”Sync”, montrant où les différents flux d’analyse doivent converger avant de
progresser. Ces points correspondent aux moments où l’Agent Coordinateur consolide
les résultats intermédiaires pour vérifier la cohérence et identifier les éventuels besoins
d’analyse supplémentaire.

La présentation finale des résultats est détaillée dans une note attachée au message
de retour vers l’utilisateur, spécifiant le format multi-modal de la réponse incluant ta-
bleaux comparatifs, graphiques de projection et recommandations textuelles structu-
rées.

Mbassi Ewolo Loic Aron

3
ENVIRONNEMENT DE

DÉVELOPPEMENT

3.1 Prérequis Système

3.1.1 Configuration matérielle requise

Le développement et l’exécution du système Agriculture Cameroun nécessitent
une configuration matérielle adaptée pour garantir des performances optimales et une
expérience de développement fluide. Les exigences matérielles ont été soigneusement
calibrées pour équilibrer accessibilité et performance, permettant aux développeurs
avec des configurations modestes de contribuer au projet tout en assurant une exécu-
tion efficace du système complet.

La mémoire vive (RAM) constitue l’élément le plus critique pour le bon fonction-
nement du système. Un minimum de 8 GB de RAM est requis pour exécuter le sys-
tème de base avec ses cinq agents spécialisés. Cette capacité permet le chargement des
modèles de langage, le maintien des contextes de conversation et l’exécution simulta-
née de plusieurs agents. Cependant, pour une expérience de développement optimale
incluant l’exécution de tests, le débogage et l’utilisation d’outils de développement,
16 GB de RAM sont fortement recommandés. Cette configuration supérieure permet
également de travailler confortablement avec plusieurs instances du système pour les
tests de charge et le développement parallèle.

Le processeur doit être suffisamment puissant pour gérer les opérations intensives
de traitement du langage naturel et la coordination multi-agents. Un processeur quad-
core moderne (Intel Core i5 de 8ème génération ou équivalent AMD Ryzen 5) constitue
la configuration minimale. Les processeurs avec plus de cœurs offrent des avantages si-
gnificatifs pour l’exécution parallèle des agents et l’amélioration des temps de réponse.
Les architectures récentes avec support des instructions AVX bénéficient d’optimisa-
tions supplémentaires pour les opérations d’intelligence artificielle.

L’espace de stockage nécessaire dépend de l’utilisation prévue du système. Un
minimum de 2 GB d’espace libre est requis pour l’installation de base du système,
incluant le code source, les dépendances Python et les données agricoles locales. Pour

39

40

un environnement de développement complet avec historique Git, environnements
virtuels multiples et données de test étendues, prévoir au moins 5 GB d’espace libre.
L’utilisation d’un SSD plutôt qu’un disque dur traditionnel améliore significativement
les temps de chargement et la réactivité générale du système.

La connexion Internet joue un rôle crucial dans le fonctionnement du système.
Une connexion haut débit stable est indispensable pour l’accès aux API de Google Ge-
mini, le téléchargement des dépendances et la synchronisation avec les dépôts Git. Une
bande passante minimale de 10 Mbps est recommandée pour une utilisation confor-
table, avec une latence faible pour optimiser les interactions avec les services cloud.
Les développeurs travaillant dans des zones avec connectivité limitée devraient consi-
dérer l’implémentation de mécanismes de cache et de mode hors ligne pour certaines
fonctionnalités.

La carte graphique n’est pas strictement nécessaire pour l’exécution du système de
base, car le traitement principal se fait via les API cloud de Google. Cependant, pour
les développeurs souhaitant expérimenter avec des modèles locaux ou implémenter
des fonctionnalités de vision par ordinateur pour l’analyse d’images de cultures, une
carte graphique avec support CUDA peut être bénéfique.

3.1.2 Systèmes d’exploitation supportés

Le système Agriculture Cameroun a été conçu avec une philosophie de compatibi-
lité multiplateforme, assurant que les développeurs peuvent contribuer indépendam-
ment de leur environnement de travail préféré. Cette approche inclusive maximise le
potentiel de collaboration et facilite l’adoption dans différents contextes techniques.

Linux constitue l’environnement de développement privilégié, offrant la meilleure
expérience en termes de performance et de compatibilité. Les distributions basées sur
Debian/Ubuntu (Ubuntu 20.04 LTS et versions ultérieures, Debian 10+) sont particu-
lièrement bien supportées, avec des scripts d’installation automatisés et une documen-
tation extensive. Les distributions basées sur Red Hat (Fedora 33+, CentOS 8+, RHEL
8+) sont également pleinement compatibles. L’écosystème Linux offre des avantages
significatifs pour le développement, incluant une gestion native des permissions, des
outils de développement puissants et une excellente intégration avec les technologies
cloud.

Windows est supporté à partir de Windows 10 version 1903 et versions ultérieures,
incluant Windows 11. Le support Windows a été soigneusement implémenté pour as-
surer une parité fonctionnelle avec Linux. L’utilisation du Windows Subsystem for Linux
(WSL2) est recommandée pour les développeurs Windows cherchant une expérience
plus proche de l’environnement Linux. Les scripts PowerShell fournis automatisent
l’installation des composants nécessaires et configurent l’environnement de manière
optimale. Les développeurs Windows doivent porter une attention particulière à la
gestion des chemins de fichiers et aux différences de fin de ligne dans les fichiers texte.

macOS est supporté à partir de macOS 10.15 (Catalina) et versions ultérieures. L’en-

Mbassi Ewolo Loic Aron

41

vironnement macOS offre un excellent compromis entre l’interface utilisateur convi-
viale et la puissance des outils Unix sous-jacents. Les développeurs macOS bénéficient
de Homebrew pour la gestion simplifiée des dépendances système. Les architectures
Intel et Apple Silicon (M1/M2) sont toutes deux supportées, avec des optimisations
spécifiques pour tirer parti des performances des puces ARM d’Apple.

Les environnements de développement cloud constituent une option de plus en
plus populaire. Le système est compatible avec les principales plateformes cloud de
développement comme GitHub Codespaces, Gitpod et Google Cloud Shell. Ces envi-
ronnements offrent l’avantage d’une configuration standardisée et de ressources sca-
lables, particulièrement utiles pour les développeurs avec des machines locales limi-
tées ou pour la collaboration en équipe.

Pour les environnements conteneurisés, le projet fournit des configurations Do-
cker complètes permettant l’exécution du système dans des conteneurs isolés. Cette
approche garantit une cohérence parfaite entre les environnements de développement,
de test et de production, éliminant les problèmes classiques de ”ça marche sur ma ma-
chine”. Les images Docker sont optimisées pour minimiser leur taille tout en incluant
toutes les dépendances nécessaires.

3.1.3 Versions Python et dépendances

Le choix de Python 3.12 comme version minimale requise reflète l’engagement
du projet envers l’utilisation des fonctionnalités modernes du langage tout en main-
tenant une stabilité production. Cette version apporte des améliorations significatives
en termes de performance, de syntaxe et de fonctionnalités qui bénéficient directement
au développement d’applications d’intelligence artificielle.

Python 3.12 introduit des optimisations de performance substantielles, particulière-
ment bénéfiques pour les applications intensives en traitement de données comme
notre système multi-agents. Les améliorations de l’interpréteur CPython résultent en
une exécution jusqu’à 25

La gestion des dépendances est orchestrée par Poetry, offrant une approche mo-
derne et déterministe de la gestion des packages Python. Les dépendances principales
du projet incluent google-generativeaipour l’intégration avec Gemini, python-dotenvpour
la gestion sécurisée des variables d’environnement, pydantic pour la validation robuste
des données, httpx pour les requêtes HTTP asynchrones performantes, et pytest avec
ses plugins pour un framework de test complet.

Les dépendances système varient selon la plateforme mais incluent généralement
des compilateurs C/C++ pour certaines extensions Python, des bibliothèques de dé-
veloppement Python (python3-dev sur Linux), et des outils de construction comme
make et cmake. Ces dépendances sont généralement gérées automatiquement par les
scripts d’installation fournis, mais leur compréhension est importante pour le débo-
gage d’éventuels problèmes d’installation.

La compatibilité ascendante avec les versions Python ultérieures est activement

Mbassi Ewolo Loic Aron

42

maintenue. Le projet utilise des pratiques de codage qui évitent la dépendance à des
fonctionnalités dépréciées et inclut des tests de compatibilité avec les versions bêta
de Python. Cette approche proactive assure que le système reste compatible avec les
futures versions de Python, protégeant l’investissement en développement.

La gestion des environnements virtuels est cruciale pour maintenir l’isolation des
dépendances et éviter les conflits entre projets. Poetry gère automatiquement la créa-
tion et l’activation des environnements virtuels, assurant que chaque développeur tra-
vaille dans un environnement cohérent et reproductible. Cette isolation est particuliè-
rement importante lors du développement de fonctionnalités expérimentales ou du
test de nouvelles versions de dépendances.

3.2 Installation de l’Environnement

3.2.1 Installation de Python 3.12+

L’installation de Python constitue la première étape cruciale dans la configuration
de l’environnement de développement. La procédure varie selon le système d’exploi-
tation, mais l’objectif reste constant : obtenir une installation Python moderne et cor-
rectement configurée.

Installation sur Windows

Pour les utilisateurs Windows, l’installation de Python nécessite une attention par-
ticulière pour assurer une configuration optimale. Commencez par naviguer vers le
site officiel Python à l’adresse python.org/downloads. Le site détecte automatique-
ment votre système d’exploitation et propose la dernière version stable de Python
compatible.

Téléchargez l’installateur Windows 64-bit (ou 32-bit selon votre système). Lors du
lancement de l’installateur, l’écran d’accueil présente une option cruciale : ”Add Py-
thon to PATH”. Il est impératif de cocher cette case avant de procéder à l’installation.
Cette action permet d’accéder à Python depuis n’importe quel répertoire dans l’invite
de commandes, évitant de nombreux problèmes de configuration ultérieurs.

Mbassi Ewolo Loic Aron

https://www.python.org/downloads/

43

FIGURE 3.1 – Interface d’installation Python sur Windows

Sélectionnez ”Install Now” pour une installation standard qui inclut pip, IDLE et la
documentation. L’installation créé un répertoire Python dans votre dossier utilisateur
et configure les associations de fichiers appropriées. Une fois l’installation terminée, vé-
rifiez son succès en ouvrant une nouvelle invite de commandes et en exécutant python
--version. La commande devrait afficher ”Python 3.12.x” confirmant une installation
réussie.

Installation sur macOS

Sur macOS, plusieurs options d’installation s’offrent aux développeurs. La mé-
thode recommandée utilise Homebrew, le gestionnaire de packages populaire pour
macOS. Si Homebrew n’est pas déjà installé, ouvrez Terminal et exécutez la commande
d’installation officielle disponible sur brew.sh.

Avec Homebrew installé, l’installation de Python devient remarquablement simple.
Exécutez brew install python@3.12 dans Terminal. Homebrew gère automatique-
ment les dépendances, configure les liens symboliques appropriés et assure que Py-
thon est accessible globalement. Cette méthode présente l’avantage de faciliter les
mises à jour futures via brew upgrade python@3.12.

Mbassi Ewolo Loic Aron

44

Installation Python via Homebrew sur macOS

Terminal affiche :
$ brew install python@3.12

==> Downloading python@3.12...
==> Installing python@3.12...

==> Python has been installed at /usr/local/bin/python3.12

Installation réussie avec configuration automatique du PATH.

FIGURE 3.2 – Installation de Python sur macOS avec Homebrew

Pour les utilisateurs préférant une installation graphique, le site python.org pro-
pose également un installateur .pkg pour macOS. Cette méthode installe Python dans
/Library/Frameworks/Python.framework et ajoute les liens nécessaires dans /usr/local/bin.
Quelle que soit la méthode choisie, vérifiez l’installation avec python3.12 --version
dans Terminal.

Installation sur Linux

Les systèmes Linux offrent généralement Python préinstallé, mais souvent dans
une version antérieure. L’installation de Python 3.12 varie selon la distribution, mais
les principes restent similaires.

Pour les distributions basées sur Ubuntu/Debian, utilisez le système de gestion de
packages APT. Commencez par ajouter le PPA deadsnakes qui fournit les versions ré-
centes de Python : sudo add-apt-repository ppa:deadsnakes/ppa. Mettez à jour la
liste des packages avec sudo apt update, puis installez Python avec sudo apt install
python3.12 python3.12-venv python3.12-dev. L’inclusion des packages venv et dev
est importante pour le support complet des environnements virtuels et la compilation
d’extensions.

Installation Python sur Ubuntu

Terminal affiche :
$ sudo add-apt-repository ppa:deadsnakes/ppa

$ sudo apt update
$ sudo apt install python3.12 python3.12-venv python3.12-dev

Setting up python3.12 (3.12.x-1) ...

Configuration des alternatives Python pour définir la version par défaut.

FIGURE 3.3 – Installation de Python sur Ubuntu Linux

Pour les distributions basées sur Fedora/Red Hat, utilisez DNF ou YUM selon
votre système. Python 3.12 peut être installé directement depuis les dépôts officiels
avec sudo dnf install python3.12. Les distributions entreprise comme RHEL peuvent

Mbassi Ewolo Loic Aron

45

nécessiter l’activation de dépôts supplémentaires ou la compilation depuis les sources.

3.2.2 Installation de Poetry

Poetry révolutionne la gestion des dépendances Python en offrant une approche
moderne et déterministe. Contrairement à pip et requirements.txt traditionnels, Poetry
gère automatiquement les environnements virtuels, résout les conflits de dépendances
et maintient un fichier de verrouillage garantissant la reproductibilité des installations.

L’installation de Poetry utilise un script d’installation officiel qui détecte automati-
quement votre système et configure Poetry de manière optimale. Sur macOS et Linux,
ouvrez un terminal et exécutez la commande curl pour télécharger et exécuter le script
d’installation. Le script crée un répertoire Poetry dans votre dossier home, installe Poe-
try de manière isolée et configure votre shell pour inclure Poetry dans le PATH.

Installation de Poetry

$ curl -sSL https://install.python-poetry.org | python3 -

Retrieving Poetry metadata...
Installing Poetry (1.7.0)

Poetry installed successfully!

Add Poetry to PATH:
export PATH="$HOME/.local/bin:$PATH"

FIGURE 3.4 – Installation automatisée de Poetry

Sur Windows, l’installation utilise PowerShell avec des privilèges administrateur.
Le script PowerShell télécharge Poetry, l’installe dans le profil utilisateur et configure
automatiquement les variables d’environnement Windows. Après l’installation, une
nouvelle session PowerShell est nécessaire pour que les changements de PATH prennent
effet.

La configuration post-installation de Poetry mérite une attention particulière. Exé-
cutez poetry config virtualenvs.in-project true pour configurer Poetry à créer
les environnements virtuels dans le répertoire du projet. Cette configuration facilite
la gestion des environnements et l’intégration avec les IDE. Vérifiez l’installation avec
poetry --version qui devrait afficher la version installée.

Poetry offre des fonctionnalités avancées qui simplifient significativement le work-
flow de développement. La commande poetry install lit le fichier pyproject.toml,
crée automatiquement un environnement virtuel si nécessaire, et installe toutes les
dépendances avec les versions exactes spécifiées dans poetry.lock. Cette approche
élimine les problèmes classiques de ”ça marche sur ma machine” en garantissant que
tous les développeurs utilisent exactement les mêmes versions de packages.

Mbassi Ewolo Loic Aron

46

3.2.3 Installation de Git

Git constitue l’outil fondamental pour la gestion de versions et la collaboration sur
le projet Agriculture Cameroun. Son installation correcte et sa configuration appro-
priée sont essentielles pour contribuer efficacement au projet.

Sur Windows, Git pour Windows (Git Bash) fournit non seulement Git mais aussi
un environnement shell Unix-like précieux. Téléchargez l’installateur depuis git-scm.com
et lancez-le. Durant l’installation, plusieurs choix importants se présentent.

— Pour l’éditeur par défaut, sélectionnez votre éditeur préféré (VS Code est recom-
mandé si installé). Pour l’ajustement du PATH, choisissez ”Git from the com-
mand line and also from 3rd-party software” pour une intégration maximale.

— Pour le terminal, optez pour ”Use MinTTY (the default terminal of MSYS2)”
pour une expérience de ligne de commande améliorée.

— Pour la gestion des fins de ligne, sélectionnez ”Checkout Windows-style, commit
Unix-style line endings” pour assurer la compatibilité multiplateforme.

Configuration Git pour Windows

Options critiques durant l’installation :

✓ Use Visual Studio Code as Git’s default editor
✓ Git from the command line and 3rd-party software

✓ Checkout Windows-style, commit Unix-style endings
✓ Use MinTTY (Git Bash terminal)

✓ Enable file system caching

FIGURE 3.5 – Options d’installation recommandées pour Git sur Windows

Sur macOS, Git peut être installé via Homebrew avec brew install git ou via
les Xcode Command Line Tools avec xcode-select –install. La méthode Homebrew est
préférée car elle facilite les mises à jour futures et installe la version la plus récente de
Git.

Sur Linux, Git est disponible dans les dépôts officiels de toutes les distributions
majeures. Pour Ubuntu/Debian, utilisez sudo apt install git. Pour Fedora, sudo
dnf install git. Ces commandes installent Git avec toutes ses dépendances et outils
associés.

Après l’installation, la configuration initiale de Git est cruciale. Configurez votre
identité globale avec git config --global user.name "Votre Nom" et git config
--global user.email "votre.email@example.com". Ces informations sont attachées
à chaque commit que vous créez. Configurez également des alias utiles comme git
config --global alias.st status pour accélérer les commandes fréquentes.

Pour le projet Agriculture Cameroun, configurez Git pour gérer correctement les
fins de ligne multiplateformes avec git config --global core.autocrlf true sur
Windows ou git config --global core.autocrlf input sur macOS/Linux. Cette

Mbassi Ewolo Loic Aron

https://git-scm.com/download/win

47

configuration prévient les problèmes de fins de ligne lors de la collaboration entre
développeurs utilisant différents systèmes d’exploitation.

3.2.4 Configuration des clés API (Google Gemini)

L’accès à l’API Google Gemini constitue le cœur de l’intelligence du système Agri-
culture Cameroun. La configuration correcte et sécurisée des clés API est donc critique
pour le fonctionnement du système.

Pour obtenir une clé API Gemini, naviguez vers makersuite.google.com/app/apikey.
Connectez-vous avec votre compte Google et créez un nouveau projet si nécessaire.
Google AI Studio propose un généreux quota gratuit suffisant pour le développement
et les tests. Cliquez sur ”Create API Key” et copiez immédiatement la clé générée dans
un endroit sûr - elle ne sera plus affichée après fermeture de la fenêtre.

Configuration de la clé API Gemini

Fichier .env à la racine du projet :

GEMINI_API_KEY=AIzaSy...votre_cle_api_ici
DEFAULT_REGION=Centre
DEFAULT_LANGUAGE=fr

LOG_LEVEL=INFO

� Ne jamais commiter ce fichier dans Git !

FIGURE 3.6 – Configuration sécurisée des variables d’environnement

La gestion sécurisée des clés API est primordiale. Créez un fichier .env à la racine
du projet (en copiant .env.example fourni). Ce fichier contient toutes les variables
d’environnement sensibles. Assurez-vous que .env est listé dans .gitignore pour évi-
ter de l’exposer accidentellement dans le contrôle de version. Le fichier .env.example
sert de template documenté sans contenir de vraies clés.

Les bonnes pratiques de sécurité incluent la rotation régulière des clés API, l’uti-
lisation de clés différentes pour le développement et la production, et la restriction
des clés API aux domaines ou adresses IP spécifiques quand possible. Google Cloud
Console permet de configurer ces restrictions pour minimiser les risques en cas de
compromission d’une clé.

Pour les environnements de production, considérez l’utilisation de services de
gestion de secrets comme Google Secret Manager ou HashiCorp Vault plutôt que des
fichiers .env. Ces services offrent une gestion centralisée, l’audit des accès et la rotation
automatique des secrets.

La validation de la configuration peut être effectuée en exécutant le script de test
fourni : python scripts/test_api_connection.py. Ce script vérifie que la clé API
est valide, que les quotas sont suffisants et que la connexion aux services Google est
opérationnelle. En cas d’erreur, le script fournit des messages diagnostiques détaillés

Mbassi Ewolo Loic Aron

48

pour faciliter le dépannage.

3.3 Structure du Projet

3.3.1 Organisation des dossiers

La structure du projet Agriculture Cameroun reflète une architecture modulaire
soigneusement conçue pour faciliter la navigation, la maintenance et l’extension du
système. Cette organisation hiérarchique sépare clairement les responsabilités tout en
maintenant une cohésion logique entre les composants.

Mbassi Ewolo Loic Aron

49

agriculture_cameroun/ Package principal

__init__.py Init package

agent.py Agent coordinateur

prompts.py Instructions

tools.py Communication

config.py Configuration

sub_agents/ Agents spécialisés

__init__.py Exports

weather/ Météorologique

__init__.py

agent.py Logique météo

prompts.py Instructions

tools.py Outils météo

crops/ Cultures

__init__.py

agent.py

prompts.py

tools.py

health/ Santé plantes

__init__.py

agent.py

prompts.py

tools.py

economic/ Économique

__init__.py

agent.py

prompts.py

tools.py

resources/ Ressources

__init__.py

agent.py

prompts.py

tools.py

utils/ Utilitaires

__init__.py

data.py Données agricoles

utils.py Fonctions auxiliaires

tests/ Tests

__init__.py

test_agents.py Tests agents

FIGURE 3.7 – Structure réelle du projet Agriculture Cameroun avec Google ADK

Mbassi Ewolo Loic Aron

50

projet_racine/ Dossier racine

agriculture_cameroun/ Package principal

examples/ Exemples

demo_cli.py Demo CLI

usage_examples.py Exemples pratiques

deployment/ Déploiement

__init__.py

deploy.py

.env.example Template config

.gitignore Git ignore

pyproject.toml Config Poetry

Dockerfile Container Docker

docker-compose.yml Multi-services

setup.sh Install Linux/macOS

setup.ps1 Install Windows

README.md Doc principale

INSTALLATION.md Guide install

QUICKSTART.md Démarrage 5min

USER_GUIDE.md Guide utilisateur

API_DOCUMENTATION.md Doc API REST

CONTRIBUTING.md Guide contribution

FAQ.md Questions FAQ

LICENSE Licence Apache 2.0

FIGURE 3.8 – Structure complète du projet avec fichiers de configuration et documentation

Le répertoire racine contient les composants principaux du système. Le fichier
agent.py implémente l’agent coordinateur qui route les requêtes vers les agents spé-
cialisés. Le fichier prompts.py centralise les instructions de l’agent principal, tandis
que tools.py définit les outils de communication inter-agents. Le fichier config.py
gère la configuration globale et les modèles de données.

Le répertoire sub_agents héberge les cinq agents spécialisés : weather (météorolo-
gie), crops (cultures), health (santé des plantes), economic (économie) et resources (res-
sources). Chaque agent suit une structure standardisée avec trois fichiers : agent.py
(logique principale), prompts.py (instructions spécialisées) et tools.py (outils mé-
tier).

Le répertoire utils contient les utilitaires partagés. Le fichier data.py centralise
les données agricoles camerounaises (régions, cultures, prix, calendriers), tandis que
utils.py fournit les fonctions auxiliaires communes au système.

Mbassi Ewolo Loic Aron

51

Le répertoire tests implémente les tests du système avec test_agents.py pour les
tests unitaires des agents.

Le répertoire examples propose des démonstrations pratiques avec demo_cli.py
(interface ligne de commande interactive) et usage_examples.py (exemples d’utilisa-
tion programmatique).

La documentation comprend plusieurs guides : README.md (présentation géné-
rale), INSTALLATION.md (installation détaillée), QUICKSTART.md (démarrage rapide),
USER_GUIDE.md (guide utilisateur) et API_DOCUMENTATION.md (documentation de l’API
REST).

3.3.2 Fichiers de configuration importants

Les fichiers de configuration du projet Agriculture Cameroun orchestrent le com-
portement du système et définissent son environnement d’exécution. Leur compré-
hension approfondie est essentielle pour personnaliser et déployer efficacement le sys-
tème.

Le fichier pyproject.toml sert de manifeste central pour le projet. Ce fichier mo-
derne remplace les traditionnels setup.py et requirements.txt, centralisant toutes
les métadonnées du projet. Il définit le nom du projet, sa version, sa description et ses
auteurs. La section [tool.poetry.dependencies] liste toutes les dépendances avec
leurs contraintes de version, assurant la reproductibilité des installations. La section
[tool.poetry.dev-dependencies] sépare clairement les outils de développement des
dépendances de production. Les configurations des outils de développement (pytest,
black, mypy) sont également centralisées ici, créant une source unique de vérité pour
la configuration du projet.

Le fichier .env (et son template .env.example) gère les variables d’environnement
sensibles et spécifiques à chaque déploiement. Au-delà de la clé API Gemini, ce fi-
chier configure le comportement du système : région par défaut, langue d’interface,
niveau de logging, timeouts des API. La séparation entre .env (ignoré par Git) et
.env.example (versionné) permet de documenter les variables nécessaires sans ex-
poser les valeurs réelles.

Le fichier config.py transforme les variables d’environnement en configuration Py-
thon typée et validée. Utilisant Pydantic, il définit des classes de configuration avec va-
lidation automatique, valeurs par défaut intelligentes et documentation intégrée. Cette
approche centralise la configuration, facilite les tests avec des configurations alterna-
tives et fournit une interface programmatique claire pour accéder aux paramètres.

Les fichiers .gitignore et .gitattributes contrôlent le comportement de Git. Le .gitignore
exclut non seulement les fichiers sensibles et temporaires standards, mais aussi les arte-
facts spécifiques au projet comme les caches de modèles et les logs de développement.
Le .gitattributes assure un traitement cohérent des fins de ligne entre plateformes
et marque certains fichiers pour un traitement spécial lors des merges.

Le fichier docker-compose.yml (quand présent) définit l’architecture conteneuri-

Mbassi Ewolo Loic Aron

52

sée du système. Il spécifie les services, leurs dépendances, les volumes pour la persis-
tance des données et les réseaux pour l’isolation. Cette configuration facilite le déploie-
ment cohérent across environnements et simplifie l’onboarding de nouveaux dévelop-
peurs.

3.3.3 Conventions de nommage et bonnes pratiques

Les conventions de nommage et les bonnes pratiques établies pour le projet Agri-
culture Cameroun assurent la cohérence, la lisibilité et la maintenabilité du code à
travers toutes les contributions.

Les conventions de nommage Python suivent strictement PEP 8 avec quelques cla-
rifications spécifiques au projet. Les noms de classes utilisent PascalCase (WeatherAgent,
CropRecommendation), communiquant clairement leur nature d’objets. Les fonctions et
méthodes emploient snake_case (get_weather_forecast, analyze_soil_data), avec
des verbes d’action pour les fonctions qui effectuent des opérations. Les constantes
utilisent SCREAMING_SNAKE_CASE (MAX_RETRY_ATTEMPTS, DEFAULT_TIMEOUT), les
distinguant visuellement des variables. Les modules et packages maintiennent snake_case
minuscule, reflétant la convention Python standard.

La structure des imports suit un ordre strict pour améliorer la lisibilité. Les imports
de la bibliothèque standard viennent en premier, suivis des imports de packages tiers,
puis des imports locaux du projet. Au sein de chaque groupe, les imports sont ordon-
nés alphabétiquement. Les imports absolus sont préférés aux imports relatifs pour la
clarté, sauf within un même package où les imports relatifs peuvent améliorer la cohé-
sion.

Les docstrings constituent une exigence non négociable pour toutes les fonctions
publiques, classes et modules. Le format Google-style est adopté pour sa lisibilité et sa
compatibilité avec les outils de documentation automatique. Chaque docstring inclut
une description concise, la documentation des paramètres avec leurs types, la valeur
de retour et ses types, et les exceptions potentielles. Les exemples d’utilisation sont
encouragés pour les fonctions complexes.

La gestion des erreurs privilégie la spécificité et l’information. Les exceptions per-
sonnalisées sont définies pour les erreurs métier spécifiques (InvalidCropError, WeatherDataUnavailableError).
Les messages d’erreur incluent suffisamment de contexte pour faciliter le débogage. Le
principe ”fail fast” est appliqué, validant les entrées tôt dans le flux d’exécution. Les
erreurs attendues (comme les timeouts réseau) sont gérées gracieusement avec des
stratégies de retry appropriées.

Les patterns de conception appropriés sont encouragés sans sur-ingénierie. Le pat-
tern Strategy est utilisé pour les différents agents, permettant l’ajout facile de nouveaux
agents. Le pattern Factory simplifie la création d’agents basée sur la configuration.
Le pattern Observer facilite la communication asynchrone entre composants. Ces pat-
terns sont appliqués judicieusement, seulement quand ils apportent une valeur claire.

La gestion de la complexité suit le principe de responsabilité unique. Les fonctions

Mbassi Ewolo Loic Aron

53

restent courtes et focalisées, idéalement sous 20 lignes. La complexité cyclomatique
est maintenue basse par l’extraction de sous-fonctions et l’utilisation de structures de
données appropriées. Les classes encapsulent un concept cohérent sans devenir des
”god objects”. Les modules regroupent des fonctionnalités liées sans créer de couplage
excessif.

Les pratiques de sécurité sont intégrées dès la conception. Les entrées utilisateur
sont systématiquement validées et assainies. Les secrets ne sont jamais codés en dur ou
loggés. Les dépendances sont régulièrement auditées pour les vulnérabilités. Le prin-
cipe du moindre privilège guide les permissions et accès. Les données sensibles des
agriculteurs sont traitées avec le plus grand soin, suivant les principes de protection
des données personnelles.

Mbassi Ewolo Loic Aron

4
IMPLÉMENTATION AVEC GOOGLE

ADK

4.1 Concepts de Base ADK

4.1.1 Création d’un agent simple

La création d’un agent avec Google ADK représente un changement de paradigme
par rapport aux frameworks traditionnels. Au lieu de programmer explicitement chaque
comportement, nous définissons les capacités et objectifs de l’agent, laissant le modèle
de langage générer les comportements appropriés. Commençons par créer un agent
météorologique simple pour illustrer les concepts fondamentaux.

Listing 4.1 – Agent météorologique avec ADK
1 # sub_agents/weather/agent.py
2 import os
3 from google.adk.agents import Agent
4 from google.genai import types
5

6 from .prompts import return_instructions_weather
7 from .tools import (
8 get_weather_forecast ,
9 get_irrigation_advice ,

10 get_climate_alerts ,
11 analyze_rainfall_patterns
12)
13

14 weather_agent = Agent(
15 model=os.getenv("WEATHER_AGENT_MODEL"),
16 name="weather_agent",
17 instruction=return_instructions_weather(),
18 tools=[
19 get_weather_forecast ,
20 get_irrigation_advice ,

54

55

21 get_climate_alerts ,
22 analyze_rainfall_patterns
23],
24 generate_content_config=types.GenerateContentConfig(temperature=0.5),
25)

Ce code illustre les concepts fondamentaux d’ADK. L’objet Agent encapsule toute la
logique nécessaire pour créer un agent intelligent. Le paramètre name fournit une iden-
tité unique à l’agent, essentielle pour la communication inter-agents. Le model spécifie
la version de Gemini à utiliser depuis les variables d’environnement. L’instruction
définit le comportement de l’agent en langage naturel, une approche radicalement dif-
férente de la programmation traditionnelle.

Les outils (tools) représentent l’interface entre l’agent et le monde extérieur. Chaque
fonction Python devient un outil utilisable par l’agent. ADK analyse automatiquement
la signature de la fonction et sa docstring pour comprendre quand et comment l’utili-
ser.

4.1.2 Cycle de vie d’un agent ADK

Le cycle de vie d’un agent ADK diffère significativement des agents traditionnels,
intégrant de manière transparente les capacités des modèles de langage dans chaque
phase d’exécution.

Cycle de vie d’un agent ADK

1. Initialisation : Chargement du modèle et des instructions
2. Réception : Traitement de la requête utilisateur
3. Analyse : Compréhension via le LLM
4. Planification : Détermination des actions nécessaires
5. Exécution : Invocation des outils si nécessaire
6. Synthèse : Génération de la réponse
7. Retour : Transmission du résultat

FIGURE 4.1 – Les phases du cycle de vie d’un agent ADK

Durant la phase d’initialisation, l’agent charge ses instructions depuis le fichier
prompts.py et configure sa connexion avec le modèle Gemini. Cette phase inclut la
validation des outils disponibles et la préparation du contexte initial. Contrairement
aux frameworks traditionnels où l’initialisation implique le chargement de règles com-
plexes, ADK se contente de préparer l’instruction système qui guidera le comporte-
ment de l’agent.

La phase de réception et analyse exploite pleinement les capacités de compréhen-
sion du langage naturel de Gemini. L’agent n’a pas besoin de parser explicitement la
requête ou de la faire correspondre à des patterns prédéfinis. Le modèle comprend l’in-

Mbassi Ewolo Loic Aron

56

tention, le contexte et les nuances de la requête, permettant une interaction beaucoup
plus naturelle et flexible.

Listing 4.2 – Gestion du contexte avec callback
1 # agriculture_cameroun/agent.py
2 def setup_before_agent_call(callback_context: CallbackContext):
3 """Configuration avant l'appel de l'agent."""
4

5 # Configuration de l'état de session
6 if "agriculture_settings" not in callback_context.state:
7 agriculture_settings = {
8 "regions": REGIONS,
9 "crops": CROPS,

10 "seasons": SEASONS,
11 "current_date": date_today ,
12 "default_region": os.getenv("DEFAULT_REGION", "Centre"),
13 "language": os.getenv("DEFAULT_LANGUAGE", "fr")
14 }
15 callback_context.state["agriculture_settings"] =

agriculture_settings
16

17 # Mise à jour des instructions avec le contexte
18 context = callback_context.state["agriculture_settings"]
19 callback_context._invocation_context.agent.instruction = (
20 return_instructions_root()
21 + f"""
22

23 Contexte actuel:
24 - Date: {context['current_date ']}
25 - Région par défaut: {context['default_region ']}
26 - Cultures principales: {', '.join(context['crops'].keys())}
27 - Régions disponibles: {', '.join(context['regions'].keys())}
28 """
29)

La phase de planification représente l’intelligence de l’agent en action. Le modèle
détermine automatiquement quels outils utiliser, dans quel ordre, et comment combi-
ner leurs résultats. Cette planification implicite élimine le besoin de définir des arbres
de décision complexes ou des machines à états.

L’exécution des outils se fait de manière transparente. ADK gère automatiquement
la sérialisation des paramètres, l’appel de fonction, la gestion des erreurs et la déséria-
lisation des résultats. L’agent peut décider d’appeler plusieurs outils en séquence ou
en parallèle selon les besoins, optimisant automatiquement le flux d’exécution.

Mbassi Ewolo Loic Aron

57

4.1.3 Gestion des comportements

Dans ADK, les comportements ne sont pas programmés explicitement mais émergent
de la combinaison des instructions, du contexte et des capacités du modèle. Cette ap-
proche offre une flexibilité sans précédent tout en maintenant un contrôle sur les ac-
tions de l’agent.

Listing 4.3 – Instructions pour comportements adaptatifs
1 # agriculture_cameroun/prompts.py
2 def return_instructions_root() -> str:
3 """Retourne les instructions pour l'agent principal."""
4

5 instruction_prompt = """
6 Tu es un expert agricole senior chargé de coordonner un système

multi-agents pour l'agriculture au Cameroun.
7 Ton rôle est d'analyser les demandes des agriculteurs et de

diriger les questions vers les agents spécialisés appropriés.
8

9 ## Agents disponibles:
10

11 1. **Agent Météo** (`call_weather_agent `): Pour toutes les
questions concernant:

12 - Prévisions météorologiques
13 - Conseils d'irrigation
14 - Alertes climatiques
15 - Conditions météo pour les cultures
16

17 2. **Agent Cultures** (`call_crops_agent `): Pour les questions
sur:

18 - Calendriers de plantation
19 - Rotation des cultures
20 - Variétés recommandées
21 - Techniques de culture
22

23 3. **Agent Santé des Plantes** (`call_health_agent `): Pour:
24 - Diagnostic de maladies
25 - Identification de parasites
26 - Traitements recommandés
27 - Mesures préventives
28

29 4. **Agent Économique** (`call_economic_agent `): Pour:
30 - Prix du marché
31 - Analyse de rentabilité
32 - Conseils de vente
33 - Opportunités commerciales
34

35 5. **Agent Ressources** (`call_resources_agent `): Pour:

Mbassi Ewolo Loic Aron

58

36 - Gestion du sol
37 - Recommandations d'engrais
38 - Irrigation efficace
39 - Conservation des ressources
40

41 ## Workflow:
42

43 1. **Comprendre la demande**: Analyse attentivement la question
de l'agriculteur

44 2. **Identifier les agents nécessaires**: Détermine quel(s)
agent(s) peuvent répondre

45 3. **Appeler les agents**: Utilise les outils appropriés avec
des questions précises

46 4. **Synthétiser les réponses**: Combine les informations reçues
47 5. **Répondre à l'agriculteur**: Fournis une réponse claire et

pratique
48

49 ## Règles importantes:
50

51 - Toujours répondre en français
52 - Adapter les conseils au contexte camerounais
53 - Privilégier les solutions locales et économiques
54 - Inclure les coûts estimés en FCFA quand pertinent
55 - Mentionner les pratiques traditionnelles quand approprié
56 - Si plusieurs agents sont nécessaires , les appeler dans l'ordre

logique
57 - Ne jamais inventer d'informations , toujours utiliser les agents
58 """
59

60 return instruction_prompt

Les comportements contextuels permettent à l’agent d’adapter automatiquement
ses réponses selon la situation. L’agent analyse non seulement le contenu explicite
de la requête mais aussi le contexte implicite, l’urgence perçue et l’historique de la
conversation pour choisir le comportement approprié.

La composition de comportements permet de créer des agents sophistiqués sans
complexité excessive. Au lieu de définir des hiérarchies de comportements complexes
comme dans JADE, ADK permet de décrire les comportements souhaités en langage
naturel, laissant le modèle orchestrer leur activation.

4.1.4 Système de prompts et instructions

Le système de prompts constitue l’âme d’un agent ADK, définissant sa personna-
lité, ses connaissances et ses patterns de comportement. La maîtrise de l’ingénierie des
prompts est essentielle pour créer des agents efficaces et fiables.

Listing 4.4 – Instructions spécialisées pour l’agent santé

Mbassi Ewolo Loic Aron

59

1 # sub_agents/health/prompts.py
2 def return_instructions_health() -> str:
3 """Retourne les instructions pour l'agent santé des plantes."""
4

5 instruction_prompt = """
6 Tu es un phytopathologiste expert spécialisé dans la santé des

cultures camerounaises.
7 Ton rôle est de diagnostiquer les maladies , identifier les

parasites et recommander des traitements adaptés au contexte
local.

8

9 ## Capacités principales:
10

11 1. **Diagnostic des maladies**: Identification des pathogènes
fongiques , bactériens et viraux

12 2. **Identification des parasites**: Reconnaître les insectes
nuisibles et ravageurs

13 3. **Recommandations de traitement**: Solutions curatives et
préventives

14 4. **Gestion intégrée**: Approches combinant méthodes
biologiques , culturales et chimiques

15 5. **Prévention**: Stratégies pour éviter les problèmes
sanitaires

16

17 ## Outils disponibles:
18

19 - `diagnose_plant_disease `: Diagnostic de maladies basé sur les
symptômes

20 - `get_treatment_recommendations `: Recommandations de traitement
spécifiques

21 - `get_pest_identification `: Identification des parasites et
ravageurs

22 - `get_prevention_strategies `: Stratégies de prévention
personnalisées

23

24 ## Contexte phytosanitaire camerounais:
25

26 ### Maladies principales par culture:
27

28 **Cacao:**
29 - Pourriture brune (Phytophthora palmivora)
30 - Mirides (Sahlbergella singularis)
31 - Chancre du cacaoyer (Phytophthora megakarya)
32 - Maladie du balai de sorcière (Moniliophthora perniciosa)
33

34 **Café:**

Mbassi Ewolo Loic Aron

60

35 - Rouille orangée (Hemileia vastatrix)
36 - Anthracnose (Colletotrichum kahawae)
37 - Scolytes (Hypothenemus hampei)
38

39 **Maïs:**
40 - Charbon du maïs (Ustilago maydis)
41 - Striure du maïs (Maize streak virus)
42 - Foreurs de tige (Sesamia calamistis)
43 """
44

45 return instruction_prompt

La structure des instructions suit des patterns éprouvés pour maximiser l’effica-
cité. L’identité et le rôle établissent le contexte général. Les domaines d’expertise dé-
limitent les connaissances de l’agent. Les contraintes définissent les garde-fous com-
portementaux. Cette structure guide le modèle tout en laissant la flexibilité nécessaire
pour des réponses naturelles.

4.2 Communication Inter-Agents

4.2.1 Mécanisme de communication dans ADK

La communication inter-agents dans ADK utilise le pattern AgentTool qui permet
des échanges structurés entre agents tout en conservant la flexibilité du langage natu-
rel.

Listing 4.5 – Communication inter-agents avec AgentTool
1 # agriculture_cameroun/tools.py
2 from google.adk.tools import ToolContext
3 from google.adk.tools.agent_tool import AgentTool
4 from typing import Optional
5

6 from .sub_agents import (
7 weather_agent ,
8 crops_agent ,
9 health_agent ,

10 economic_agent ,
11 resources_agent
12)
13

14 async def call_weather_agent(
15 question: str,
16 tool_context: ToolContext ,
17 region: Optional[str] = None,
18):
19 """Appelle l'agent météo pour les questions climatiques.

Mbassi Ewolo Loic Aron

61

20

21 Args:
22 question: Question sur la météo ou le climat
23 region: Région spécifique (optionnel)
24 tool_context: Contexte de l'outil
25

26 Returns:
27 Réponse de l'agent météo
28 """
29 if region is None:
30 region =

tool_context.state["agriculture_settings"]["default_region"]
31

32 agent_tool = AgentTool(agent=weather_agent)
33

34 weather_input = {
35 "request": question ,
36 "region": region
37 }
38

39 response = await agent_tool.run_async(
40 args=weather_input ,
41 tool_context=tool_context
42)
43

44 tool_context.state["weather_response"] = response
45 return response

Le système de communication ADK adopte une approche qui combine la struc-
ture nécessaire pour la fiabilité avec la flexibilité du langage naturel. Chaque appel
d’agent utilise AgentTool avec des paramètres structurés tout en permettant un contenu
en langage naturel que les agents peuvent interpréter selon leur contexte et expertise.

La gestion asynchrone des appels permet aux agents de traiter les requêtes de
manière efficace. Cette approche évite les blocages et permet un traitement parallèle
efficace des requêtes complexes nécessitant l’intervention de plusieurs agents.

4.2.2 Implémentation des outils (tools)

Les outils dans ADK représentent le pont entre l’intelligence linguistique des agents
et les actions concrètes dans le monde réel. Leur implémentation correcte est cruciale
pour créer des agents véritablement utiles.

Listing 4.6 – Outil de diagnostic des maladies
1 # sub_agents/health/tools.py
2 from typing import Dict, List, Any, Optional
3 import google.generativeai as genai
4 from google.adk.tools import ToolContext

Mbassi Ewolo Loic Aron

62

5

6 def diagnose_plant_disease(
7 crop: str,
8 symptoms: List[str],
9 tool_context: ToolContext ,

10 affected_parts: Optional[List[str]] = None,
11 environmental_conditions: Optional[str] = None,
12) -> Dict[str, Any]:
13 """Diagnostique une maladie des plantes basée sur les symptômes.
14

15 Args:
16 crop: Type de culture affectée
17 symptoms: Liste des symptômes observés
18 affected_parts: Parties de la plante affectées (optionnel)
19 environmental_conditions: Conditions environnementales

(optionnel)
20 tool_context: Contexte de l'outil
21

22 Returns:
23 Diagnostic détaillé avec probabilités
24 """
25 # Base de données des maladies étendues
26 disease_database = {
27 "cacao": [
28 {
29 "name": "Pourriture brune",
30 "agent": "Phytophthora palmivora",
31 "symptoms": ["taches brunes", "pourriture fruits",

"brunissement cabosses", "exsudat"],
32 "affected_parts": ["fruits", "cabosses", "branches"],
33 "conditions": ["humidité élevée", "température

25-30°C", "blessures"],
34 "severity": "élevée",
35 "treatments": ["fongicides cupriques", "taille

sanitaire", "amélioration drainage"]
36 },
37 {
38 "name": "Mirides",
39 "agent": "Sahlbergella singularis",
40 "symptoms": ["taches noires", "dessèchement

branches", "écoulement sève", "chancres"],
41 "affected_parts": ["branches", "tronc", "rameaux"],
42 "conditions": ["saison sèche", "stress hydrique",

"mauvais entretien"],
43 "severity": "très élevée",
44 "treatments": ["insecticides", "taille parties

atteintes", "amélioration ombrage"]

Mbassi Ewolo Loic Aron

63

45 }
46]
47 }
48

49 # Calcul des scores de correspondance
50 crop_diseases = disease_database.get(crop, [])
51 disease_scores = []
52

53 for disease in crop_diseases:
54 score = 0
55 total_criteria = 0
56

57 # Score basé sur les symptômes
58 if symptoms:
59 symptom_matches = sum(1 for symptom in symptoms
60 if any(s in symptom.lower() for s in

disease["symptoms"]))
61 score += (symptom_matches / len(disease["symptoms"])) *

40
62 total_criteria += 40
63

64 # Calcul du pourcentage de probabilité
65 probability = (score / total_criteria * 100) if

total_criteria > 0 else 0
66

67 disease_scores.append({
68 "disease": disease["name"],
69 "agent": disease["agent"],
70 "probability": probability ,
71 "severity": disease["severity"],
72 "treatments": disease["treatments"],
73 "matching_symptoms": [s for s in symptoms if any(ds in

s.lower() for ds in disease["symptoms"])]
74 })
75

76 # Tri par probabilité décroissante
77 disease_scores.sort(key=lambda x: x["probability"], reverse=True)
78

79 return {
80 "crop": crop,
81 "symptoms": symptoms ,
82 "diagnostic_results": disease_scores ,
83 "most_likely_diagnosis": disease_scores[0] if disease_scores

else None,
84 "confidence_level": disease_scores[0]["probability"] if

disease_scores else 0
85 }

Mbassi Ewolo Loic Aron

64

Les outils agricoles spécialisés démontrent la puissance d’ADK pour créer des
fonctionnalités complexes accessibles via le langage naturel. Chaque outil encapsule
une expertise spécifique tout en restant flexible dans son utilisation. Les outils ana-
lysent automatiquement les paramètres fournis par l’agent pour fournir des résultats
pertinents.

La conception des outils suit des principes importants pour maximiser leur utilité.
Les signatures de fonction claires avec typage permettent à l’agent de comprendre
quand et comment utiliser l’outil. Les docstrings détaillées fournissent le contexte né-
cessaire pour une utilisation appropriée. Les paramètres optionnels offrent de la flexi-
bilité tout en maintenant la simplicité pour les cas d’usage basiques.

4.2.3 Passage de contexte entre agents

Le passage efficace du contexte entre agents est crucial pour maintenir la cohérence
des interactions et permettre une collaboration sophistiquée dans la résolution de pro-
blèmes complexes.

Listing 4.7 – Gestion du contexte partagé entre agents
1 # agriculture_cameroun/tools.py
2 async def call_crops_agent(
3 question: str,
4 tool_context: ToolContext ,
5 crop: Optional[str] = None,
6 region: Optional[str] = None,
7):
8 """Appelle l'agent cultures pour les questions de plantation et

récolte.
9

10 Args:
11 question: Question sur les cultures
12 crop: Culture spécifique (optionnel)
13 region: Région spécifique (optionnel)
14 tool_context: Contexte de l'outil
15

16 Returns:
17 Réponse de l'agent cultures
18 """
19 if region is None:
20 region =

tool_context.state["agriculture_settings"]["default_region"]
21

22 agent_tool = AgentTool(agent=crops_agent)
23

24 crops_input = {
25 "request": question ,
26 "crop": crop,

Mbassi Ewolo Loic Aron

65

27 "region": region
28 }
29

30 response = await agent_tool.run_async(
31 args=crops_input ,
32 tool_context=tool_context
33)
34

35 tool_context.state["crops_response"] = response
36 return response
37

38 async def call_health_agent(
39 question: str,
40 tool_context: ToolContext ,
41 symptoms: Optional[str] = None,
42 crop: Optional[str] = None,
43):
44 """Appelle l'agent santé des plantes pour diagnostics et

traitements.
45

46 Args:
47 question: Question sur la santé des plantes
48 symptoms: Description des symptômes (optionnel)
49 crop: Culture affectée (optionnel)
50 tool_context: Contexte de l'outil
51

52 Returns:
53 Réponse de l'agent santé
54 """
55 agent_tool = AgentTool(agent=health_agent)
56

57 health_input = {
58 "request": question ,
59 "symptoms": symptoms ,
60 "crop": crop
61 }
62

63 response = await agent_tool.run_async(
64 args=health_input ,
65 tool_context=tool_context
66)
67

68 tool_context.state["health_response"] = response
69 return response

Le système de contexte partagé permet aux agents de maintenir une compréhen-
sion cohérente de la conversation et des besoins de l’utilisateur. Le tool_context.state

Mbassi Ewolo Loic Aron

66

centralise toutes les informations pertinentes, de l’historique conversationnel aux don-
nées partagées entre agents. Cette approche centralisée facilite la coordination tout en
permettant à chaque agent de maintenir sa spécialisation.

L’enrichissement contextuel adapte dynamiquement le contexte selon les besoins
spécifiques de chaque agent. Les réponses des agents sont stockées dans le contexte
partagé, permettant aux appels suivants d’exploiter les informations précédemment
obtenues.

4.3 Implémentation de l’Agent Principal

4.3.1 Structure du fichier agent.py

L’agent principal constitue le cœur du système Agriculture Cameroun, orchestrant
l’ensemble des interactions et assurant la cohérence des réponses. Sa structure reflète
cette responsabilité centrale tout en maintenant la modularité nécessaire pour l’évolu-
tion du système.

Listing 4.8 – Structure complète de l’agent principal
1 # agriculture_cameroun/agent.py
2 import os
3 from datetime import date
4 from google.genai import types
5 from google.adk.agents import Agent
6 from google.adk.agents.callback_context import CallbackContext
7 from google.adk.tools import load_artifacts
8

9 from .sub_agents import (
10 weather_agent ,
11 crops_agent ,
12 health_agent ,
13 economic_agent ,
14 resources_agent
15)
16 from .prompts import return_instructions_root
17 from .tools import call_weather_agent , call_crops_agent ,

call_health_agent , call_economic_agent , call_resources_agent
18 from .utils.data import REGIONS, CROPS, SEASONS
19

20 date_today = date.today()
21

22 def setup_before_agent_call(callback_context: CallbackContext):
23 """Configuration avant l'appel de l'agent."""
24

25 # Configuration de l'état de session
26 if "agriculture_settings" not in callback_context.state:
27 agriculture_settings = {

Mbassi Ewolo Loic Aron

67

28 "regions": REGIONS,
29 "crops": CROPS,
30 "seasons": SEASONS,
31 "current_date": date_today ,
32 "default_region": os.getenv("DEFAULT_REGION", "Centre"),
33 "language": os.getenv("DEFAULT_LANGUAGE", "fr")
34 }
35 callback_context.state["agriculture_settings"] =

agriculture_settings
36

37 # Mise à jour des instructions avec le contexte
38 context = callback_context.state["agriculture_settings"]
39 callback_context._invocation_context.agent.instruction = (
40 return_instructions_root()
41 + f"""
42

43 Contexte actuel:
44 - Date: {context['current_date ']}
45 - Région par défaut: {context['default_region ']}
46 - Cultures principales: {', '.join(context['crops'].keys())}
47 - Régions disponibles: {', '.join(context['regions'].keys())}
48 """
49)
50

51 root_agent = Agent(
52 model=os.getenv("ROOT_AGENT_MODEL"),
53 name="agriculture_multiagent",
54 instruction=return_instructions_root(),
55 global_instruction=(
56 f"""
57 Tu es un Système Multi-Agents pour l'Agriculture

Camerounaise.
58 Date actuelle: {date_today}
59 Langue: Français
60 """
61),
62 sub_agents=[
63 weather_agent ,
64 crops_agent ,
65 health_agent ,
66 economic_agent ,
67 resources_agent
68],
69 tools=[
70 call_weather_agent ,
71 call_crops_agent ,
72 call_health_agent ,

Mbassi Ewolo Loic Aron

68

73 call_economic_agent ,
74 call_resources_agent ,
75 load_artifacts ,
76],
77 before_agent_callback=setup_before_agent_call ,
78 generate_content_config=types.GenerateContentConfig(temperature=0.7),
79)

4.3.2 Configuration et initialisation

La configuration de l’agent principal suit une approche modulaire permettant une
personnalisation facile selon les besoins spécifiques. Le fichier config.py centralise
toutes les constantes et paramètres configurables du système.

Listing 4.9 – Configuration du système
1 # agriculture_cameroun/config.py
2 from enum import Enum
3 from pydantic import BaseModel , Field
4

5 class RegionType(str, Enum):
6 """Types de régions du Cameroun."""
7 CENTRE = "Centre"
8 LITTORAL = "Littoral"
9 OUEST = "Ouest"

10 SUD = "Sud"
11 EST = "Est"
12 NORD = "Nord"
13 ADAMAOUA = "Adamaoua"
14 EXTREME_NORD = "Extrême-Nord"
15 NORD_OUEST = "Nord-Ouest"
16 SUD_OUEST = "Sud-Ouest"
17

18 class CropType(str, Enum):
19 """Types principaux de cultures."""
20 CACAO = "cacao"
21 CAFE = "café"
22 MANIOC = "manioc"
23 MAIS = "maïs"
24 PLANTAIN = "plantain"
25 ARACHIDE = "arachide"
26

27 class AgricultureConfig(BaseModel):
28 """Configuration principale du système agricole."""
29

30 default_region: RegionType = RegionType.CENTRE
31 default_language: str = "fr"
32 currency: str = "FCFA"

Mbassi Ewolo Loic Aron

69

33

34 # Modèles d'IA
35 root_agent_model: str = Field(default="gemini -2.0-flash -001")
36 weather_agent_model: str = Field(default="gemini -2.0-flash -001")
37 crops_agent_model: str = Field(default="gemini -2.0-flash -001")
38 health_agent_model: str = Field(default="gemini -2.0-flash -001")
39 economic_agent_model: str = Field(default="gemini -2.0-flash -001")
40 resources_agent_model: str =

Field(default="gemini -2.0-flash -001")

L’initialisation du système suit une séquence précise garantissant que tous les com-
posants sont correctement configurés avant le démarrage. Cette approche défensive
permet de détecter les problèmes de configuration tôt et de fournir des messages d’er-
reur explicites.

4.3.3 Routage vers les sous-agents

Le mécanisme de routage constitue l’intelligence centrale du coordinateur, déter-
minant quels agents consulter pour chaque requête. Cette décision s’appuie sur l’ana-
lyse sémantique de la requête par Gemini, permettant une compréhension nuancée
des besoins de l’utilisateur.

Listing 4.10 – Routage intelligent vers les agents
1 # agriculture_cameroun/tools.py - Pattern de routage
2 async def call_economic_agent(
3 question: str,
4 tool_context: ToolContext ,
5 crop: Optional[str] = None,
6 quantity: Optional[float] = None,
7):
8 """Appelle l'agent économique pour analyses de marché et

rentabilité.
9

10 Args:
11 question: Question économique
12 crop: Culture concernée (optionnel)
13 quantity: Quantité en kg (optionnel)
14 tool_context: Contexte de l'outil
15

16 Returns:
17 Réponse de l'agent économique
18 """
19 agent_tool = AgentTool(agent=economic_agent)
20

21 economic_input = {
22 "request": question ,
23 "crop": crop,

Mbassi Ewolo Loic Aron

70

24 "quantity": quantity
25 }
26

27 response = await agent_tool.run_async(
28 args=economic_input ,
29 tool_context=tool_context
30)
31

32 tool_context.state["economic_response"] = response
33 return response

Le routage dans ADK se fait naturellement grâce à l’analyse sémantique du LLM
qui comprend le contenu de la requête et sélectionne automatiquement les outils ap-
propriés. Cette approche élimine le besoin de règles de routage explicites comme dans
les systèmes traditionnels.

4.4 Implémentation des Agents Spécialisés

4.4.1 Agent Météorologique

L’Agent Météorologique fournit des informations climatiques essentielles pour la
prise de décision agricole. Son implémentation combine accès aux données météo, ana-
lyse contextuelle et recommandations agricoles spécifiques.

Listing 4.11 – Outils météorologiques
1 # sub_agents/weather/tools.py
2 def get_weather_forecast(
3 region: str,
4 tool_context: ToolContext ,
5 days: int = 7,
6) -> Dict[str, Any]:
7 """Obtient les prévisions météo pour une région.
8

9 Args:
10 region: Nom de la région camerounaise
11 days: Nombre de jours de prévision (max 14)
12 tool_context: Contexte de l'outil
13

14 Returns:
15 Prévisions météorologiques détaillées
16 """
17 # Simulation de données météo réalistes pour le Cameroun
18 base_temp = {
19 "Nord": {"min": 22, "max": 38},
20 "Centre": {"min": 19, "max": 28},
21 "Littoral": {"min": 23, "max": 31},

Mbassi Ewolo Loic Aron

71

22 "Ouest": {"min": 15, "max": 25},
23 "Sud": {"min": 22, "max": 29}
24 }
25

26 # Obtenir les températures de base pour la région
27 temps = base_temp.get(region, base_temp["Centre"])
28

29 # Générer les prévisions
30 forecast = []
31 for i in range(min(days, 14)):
32 date = datetime.now() + timedelta(days=i)
33

34 # Variations aléatoires réalistes
35 temp_min = temps["min"] + random.randint(-2, 2)
36 temp_max = temps["max"] + random.randint(-2, 2)
37

38 daily_forecast = {
39 "date": date.strftime("%Y-%m-%d"),
40 "temperature_min": temp_min ,
41 "temperature_max": temp_max ,
42 "humidity": random.randint(60, 85),
43 "rain_probability": random.randint(10, 80),
44 "wind_speed": random.randint(5, 20),
45 "conditions": "Pluvieux" if random.randint(0, 100) > 50

else "Partiellement nuageux"
46 }
47

48 forecast.append(daily_forecast)
49

50 return {
51 "region": region,
52 "forecast": forecast ,
53 "summary": f"Prévisions météo pour {region} sur {days} jours"
54 }

L’agent météorologique utilise plusieurs outils spécialisés pour collecter et analy-
ser les données météorologiques. Le système intègre des sources de données simulées
qui peuvent être facilement remplacées par de vraies APIs météorologiques.

4.4.2 Agent Cultures

L’Agent Cultures apporte l’expertise agronomique au système, conseillant sur tous
les aspects de la production végétale adaptée au contexte camerounais.

Listing 4.12 – Données agricoles camerounaises
1 # agriculture_cameroun/utils/data.py
2 from agriculture_cameroun.config import RegionType , CropType

Mbassi Ewolo Loic Aron

72

3

4 # Régions du Cameroun avec leurs caractéristiques
5 REGIONS = {
6 RegionType.CENTRE: {
7 "name": "Centre",
8 "climate": "Équatorial de transition",
9 "rainfall_mm": "1000-1600",

10 "temperature_range": "22-28°C",
11 "main_crops": ["manioc", "maïs", "plantain", "arachide"],
12 "soil_types": ["argileux", "lateritique"],
13 "agricultural_zones": ["Yaoundé", "Mbalmayo", "Obala"]
14 },
15 RegionType.LITTORAL: {
16 "name": "Littoral",
17 "climate": "Équatorial humide",
18 "rainfall_mm": "1500-4000",
19 "temperature_range": "24-30°C",
20 "main_crops": ["cacao", "palmier_à_huile", "plantain",

"manioc"],
21 "soil_types": ["argileux", "sableux"],
22 "agricultural_zones": ["Douala", "Edéa", "Nkongsamba"]
23 }
24 }
25

26 # Prix moyens du marché (FCFA/kg)
27 MARKET_PRICES = {
28 CropType.CACAO: {"min": 1000, "max": 1500, "average": 1200},
29 CropType.CAFE: {"min": 1500, "max": 2500, "average": 2000},
30 CropType.MANIOC: {"min": 150, "max": 300, "average": 200},
31 CropType.MAIS: {"min": 200, "max": 400, "average": 300},
32 CropType.PLANTAIN: {"min": 100, "max": 200, "average": 150},
33 CropType.ARACHIDE: {"min": 600, "max": 1000, "average": 800}
34 }

La base de connaissances est structurée de manière hiérarchique, permettant à
l’agent de naviguer efficacement des concepts généraux vers des recommandations
spécifiques. Le fichier data.py contient des structures de données riches encodant l’ex-
pertise agricole camerounaise.

4.4.3 Agent Santé des Plantes

L’Agent Santé des Plantes agit comme phytopathologiste virtuel, diagnostiquant
les problèmes et proposant des solutions intégrées.

Listing 4.13 – Base de données phytosanitaire
1 # sub_agents/health/tools.py - Base de données des maladies
2 disease_database = {

Mbassi Ewolo Loic Aron

73

3 "cacao": [
4 {
5 "name": "Pourriture brune",
6 "agent": "Phytophthora palmivora",
7 "symptoms": ["taches brunes", "pourriture fruits",

"brunissement cabosses"],
8 "affected_parts": ["fruits", "cabosses", "branches"],
9 "conditions": ["humidité élevée", "température 25-30°C"],

10 "severity": "élevée",
11 "treatments": ["fongicides cupriques", "taille

sanitaire", "amélioration drainage"]
12 },
13 {
14 "name": "Mirides",
15 "agent": "Sahlbergella singularis",
16 "symptoms": ["taches noires", "dessèchement branches",

"écoulement sève"],
17 "affected_parts": ["branches", "tronc", "rameaux"],
18 "conditions": ["saison sèche", "stress hydrique"],
19 "severity": "très élevée",
20 "treatments": ["insecticides", "taille parties

atteintes", "amélioration ombrage"]
21 }
22],
23 "maïs": [
24 {
25 "name": "Striure du maïs",
26 "agent": "Maize streak virus",
27 "symptoms": ["striures jaunes", "nanisme",

"déformation"],
28 "affected_parts": ["feuilles", "plant entier"],
29 "conditions": ["cicadelles vectrices"],
30 "severity": "élevée",
31 "treatments": ["variétés résistantes", "lutte contre

cicadelles"]
32 }
33]
34 }

L’agent intègre une base de données complète des maladies et parasites communs
au Cameroun. Cette base peut être facilement étendue avec de nouvelles maladies ou
parasites selon les observations terrain.

4.4.4 Agent Économique

L’Agent Économique fournit l’intelligence commerciale nécessaire pour transfor-
mer l’agriculture de subsistance en entreprise rentable.

Mbassi Ewolo Loic Aron

74

Listing 4.14 – Analyse économique
1 # sub_agents/economic/tools.py
2 def analyze_profitability(
3 crop: str,
4 area_hectares: float,
5 tool_context: ToolContext ,
6 production_system: str = "traditionnel",
7) -> Dict[str, Any]:
8 """Analyse la rentabilité d'une culture.
9

10 Args:
11 crop: Type de culture
12 area_hectares: Superficie en hectares
13 production_system: Système de production
14 tool_context: Contexte de l'outil
15

16 Returns:
17 Analyse de rentabilité détaillée
18 """
19 # Coûts de base par hectare (FCFA)
20 base_costs = {
21 "semences": 25000,
22 "engrais": 45000,
23 "pesticides": 20000,
24 "main_oeuvre": 80000,
25 "transport": 15000,
26 "divers": 10000
27 }
28

29 total_cost_per_ha = sum(base_costs.values())
30 total_cost = total_cost_per_ha * area_hectares
31

32 # Prix de vente estimé
33 market_price = MARKET_PRICES.get(CropType(crop), {"average":

300})["average"]
34

35 return {
36 "crop": crop,
37 "area_hectares": area_hectares ,
38 "costs": {
39 "breakdown": base_costs ,
40 "total": total_cost
41 },
42 "market_price": market_price ,
43 "analysis": f"Analyse de rentabilité pour {crop} sur

{area_hectares} ha"
44 }

Mbassi Ewolo Loic Aron

75

L’agent effectue des analyses financières complètes adaptées au contexte des pe-
tits agriculteurs camerounais. Les calculs prennent en compte les spécificités locales
comme le travail familial et les systèmes d’entraide.

4.4.5 Agent Ressources

L’Agent Ressources optimise l’utilisation des ressources naturelles et des intrants,
promouvant une agriculture durable et efficiente.

Listing 4.15 – Gestion des ressources
1 # sub_agents/resources/tools.py
2 def analyze_soil_requirements(
3 crop: str,
4 region: str,
5 tool_context: ToolContext ,
6 soil_type: Optional[str] = None,
7 current_ph: Optional[float] = None,
8) -> Dict[str, Any]:
9 """Analyse les exigences du sol pour une culture donnée.

10

11 Args:
12 crop: Type de culture
13 region: Région de culture
14 soil_type: Type de sol (optionnel)
15 current_ph: pH actuel du sol (optionnel)
16 tool_context: Contexte de l'outil
17

18 Returns:
19 Analyse complète des exigences du sol
20 """
21 # Exigences par culture
22 crop_requirements = {
23 "cacao": {
24 "ph_optimal": {"min": 6.0, "max": 7.0},
25 "depth_cm": 150,
26 "drainage": "bien drainé",
27 "organic_matter_percent": {"min": 3.0, "optimal": 5.0}
28 },
29 "maïs": {
30 "ph_optimal": {"min": 5.8, "max": 7.0},
31 "depth_cm": 80,
32 "drainage": "bien drainé à modéré",
33 "organic_matter_percent": {"min": 2.0, "optimal": 4.0}
34 }
35 }
36

37 requirements = crop_requirements.get(crop,

Mbassi Ewolo Loic Aron

76

crop_requirements["maïs"])
38

39 return {
40 "crop": crop,
41 "region": region,
42 "requirements": requirements ,
43 "soil_analysis": f"Analyse des exigences du sol pour {crop}

en région {region}"
44 }

L’agent génère des plans d’optimisation personnalisés considérant les contraintes
et opportunités spécifiques de chaque exploitation. Cette approche modulaire avec
des agents spécialisés permet au système Agriculture Cameroun d’offrir une expertise
complète tout en maintenant la flexibilité nécessaire pour s’adapter aux besoins variés
des agriculteurs camerounais.

Mbassi Ewolo Loic Aron

5
INTÉGRATION ET DÉPLOIEMENT

5.1 Interface Utilisateur

5.1.1 Interface web avec ADK

Google ADK révolutionne la création d’interfaces utilisateur pour les systèmes
multi-agents en fournissant une interface web moderne et réactive out-of-the-box. Cette
interface, basée sur les dernières technologies web, offre une expérience utilisateur
fluide et intuitive parfaitement adaptée aux besoins des agriculteurs camerounais.

Interface Web Agriculture Cameroun

Composants de l’interface ADK :

- Zone de chat interactive en bas
- Affichage des réponses avec formatage Markdown

- Indicateur d’agent actif en temps réel
- Support des suggestions de questions

- Upload de fichiers pour diagnostic

URL d’accès : http://localhost:8080
Commande : poetry run adk serve . --port 8080

FIGURE 5.1 – Architecture de l’interface web ADK

L’interface web ADK est automatiquement générée lors du lancement du système
avec la commande adk serve. Cette approche zero-configuration permet de démarrer
immédiatement sans configuration complexe d’interface.

Listing 5.1 – Configuration de l’agent principal pour l’interface
1 # Extrait de agriculture_cameroun/agent.py
2 from google.adk.agents import Agent
3 from google.genai import types
4

5 # Configuration de l'agent principal

77

78

6 root_agent = Agent(
7 model=os.getenv("ROOT_AGENT_MODEL", "gemini -2.0-flash -001"),
8 name="agriculture_multiagent",
9 instruction=return_instructions_root(),

10 global_instruction=(
11 f"""
12 Tu es un Système Multi-Agents pour l'Agriculture

Camerounaise.
13 Date actuelle: {date_today}
14 Langue: Français
15 """
16),
17 sub_agents=[
18 weather_agent ,
19 crops_agent ,
20 health_agent ,
21 economic_agent ,
22 resources_agent
23],
24 tools=[
25 call_weather_agent ,
26 call_crops_agent ,
27 call_health_agent ,
28 call_economic_agent ,
29 call_resources_agent ,
30 load_artifacts ,
31],
32 before_agent_callback=setup_before_agent_call ,
33 generate_content_config=types.GenerateContentConfig(temperature=0.7),
34)

5.1.2 API REST pour intégrations externes

Au-delà de l’interface web, ADK expose automatiquement une API REST permet-
tant l’intégration du système Agriculture Cameroun dans d’autres applications et ser-
vices.

Listing 5.2 – Utilisation de l’API REST ADK
1 # Exemples d'utilisation de l'API REST générée par ADK
2

3 # Point d'entrée principal pour les requêtes
4 # POST http://localhost:8080/v1/messages
5

6 # Format de requête JSON
7 {
8 "messages": [{
9 "role": "user",

Mbassi Ewolo Loic Aron

79

10 "content": "Quand planter le maïs dans la région Centre ?"
11 }],
12 "model": "agriculture_multiagent",
13 "stream": false
14 }
15

16 # Headers requis
17 Content-Type: application/json
18 Accept: application/json
19

20 # Exemple avec curl
21 curl -X POST http://localhost:8080/v1/messages \
22 -H "Content-Type: application/json" \
23 -d '{
24 "messages": [{
25 "role": "user",
26 "content": "Prix actuel du cacao au marché"
27 }]
28 }'

5.1.3 Exemples d’utilisation

Pour illustrer concrètement l’utilisation du système, examinons le script de dé-
monstration CLI fourni dans le projet.

Listing 5.3 – Interface CLI de démonstration (extrait de examples/demo_cli.py)
1 def interactive_mode():
2 """Mode interactif pour tester les fonctionnalités."""
3 print("� AGRICULTURE CAMEROUN - MODE INTERACTIF")
4 print("===")
5 print("Tapez 'aide' pour voir les commandes disponibles")
6 print("Tapez 'quit' pour quitter\n")
7

8 while True:
9 try:

10 user_input = input("Votre question: ").strip()
11

12 if user_input.lower() in ['quit', 'exit', 'quitter']:
13 print("Au revoir !")
14 break
15 elif user_input.lower() in ['aide', 'help']:
16 print_help()
17 elif not user_input:
18 continue
19 else:
20 response = process_query(user_input)
21 print(f"{response}\n")

Mbassi Ewolo Loic Aron

80

22

23 except KeyboardInterrupt:
24 print("\nAu revoir ! ")
25 break
26

27 def process_query(query: str) -> str:
28 """Traite une requête utilisateur et retourne une réponse

simulée."""
29 query_lower = query.lower()
30

31 # Détection du type de question
32 if any(word in query_lower for word in ['météo', 'temps',

'pluie']):
33 region = extract_region(query) or "Cameroun"
34 return simulate_weather_query(region, query)
35

36 elif any(word in query_lower for word in ['planter', 'culture',
'variété']):

37 crop = extract_crop(query) or "culture"
38 region = extract_region(query) or "Cameroun"
39 return simulate_crop_query(crop, region)

5.2 Tests et Validation

5.2.1 Tests unitaires des agents

La stratégie de test du système Agriculture Cameroun assure la fiabilité et la pré-
cision des conseils fournis aux agriculteurs. Les tests sont organisés dans le répertoire
tests/.

Listing 5.4 – Tests unitaires réels du projet (tests/test_agents.py)
1 import pytest
2 import os
3 from unittest.mock import Mock, patch, AsyncMock
4

5 # Configuration pour les tests
6 os.environ["GEMINI_API_KEY"] = "test-api-key"
7

8 from agriculture_cameroun.agent import root_agent
9 from agriculture_cameroun.sub_agents.weather.agent import

weather_agent
10 from agriculture_cameroun.sub_agents.crops.agent import crops_agent
11

12 class TestAgentConfiguration:
13 """Tests de configuration des agents."""
14

Mbassi Ewolo Loic Aron

81

15 def test_root_agent_initialization(self):
16 """Test l'initialisation de l'agent principal."""
17 assert root_agent.name == "agriculture_multiagent"
18 assert root_agent.model is not None
19 assert len(root_agent.sub_agents) == 5
20 assert len(root_agent.tools) >= 6
21

22 def test_sub_agents_initialization(self):
23 """Test l'initialisation des sous-agents."""
24 agents = [
25 (weather_agent , "weather_agent"),
26 (crops_agent , "crops_agent"),
27]
28

29 for agent, expected_name in agents:
30 assert agent.name == expected_name
31 assert agent.model is not None
32 assert len(agent.tools) > 0
33

34 class TestWeatherAgent:
35 """Tests pour l'agent météorologique."""
36

37 @pytest.fixture
38 def mock_weather_context(self):
39 """Mock du contexte pour les outils météo."""
40 context = Mock()
41 context.state = {"agriculture_settings": {"default_region":

"Centre"}}
42 return context
43

44 @patch('agriculture_cameroun.sub_agents.weather.tools.model.
45 generate_content')
46 def test_weather_forecast_tool(self, mock_generate ,

mock_weather_context):
47 """Test l'outil de prévisions météo."""
48 from agriculture_cameroun.sub_agents.weather.tools import

get_weather_forecast
49

50 mock_response = Mock()
51 mock_response.text = "Prévisions météo favorables"
52 mock_generate.return_value = mock_response
53

54 result = get_weather_forecast(
55 region="Centre",
56 days=7,
57 tool_context=mock_weather_context
58)

Mbassi Ewolo Loic Aron

82

59

60 assert "region" in result
61 assert "forecast" in result
62 assert result["region"] == "Centre"

5.2.2 Tests d’intégration

Les tests d’intégration vérifient la coordination entre les différents agents du sys-
tème.

Listing 5.5 – Tests d’intégration des données (tests/test_agents.py)
1 class TestDataUtilities:
2 """Tests pour les utilitaires de données."""
3

4 def test_crop_info_retrieval(self):
5 """Test la récupération d'informations sur les cultures."""
6 from agriculture_cameroun.utils.data import get_crop_info
7 from agriculture_cameroun.config import CropType
8

9 cacao_info = get_crop_info(CropType.CACAO)
10 assert cacao_info is not None
11 assert cacao_info.name == CropType.CACAO
12 assert cacao_info.growth_cycle_days > 0
13 assert len(cacao_info.suitable_regions) > 0
14

15 def test_region_info_retrieval(self):
16 """Test la récupération d'informations sur les régions."""
17 from agriculture_cameroun.utils.data import get_region_info
18 from agriculture_cameroun.config import RegionType
19

20 centre_info = get_region_info(RegionType.CENTRE)
21 assert centre_info is not None
22 assert "name" in centre_info
23 assert "climate" in centre_info
24 assert "main_crops" in centre_info

5.2.3 Validation des données agricoles

Un aspect crucial du système est la validation de l’exactitude des données agricoles
camerounaises.

Listing 5.6 – Validation des données agricoles (agriculture_cameroun/utils/data.py)
1 # Données validées pour l'agriculture camerounaise
2 CROPS = {
3 CropType.CACAO: CropInfo(
4 name=CropType.CACAO,

Mbassi Ewolo Loic Aron

83

5 scientific_name="Theobroma cacao",
6 local_names=["Cacao", "Cocoa"],
7 growth_cycle_days=365,
8 optimal_temperature_min=21,
9 optimal_temperature_max=32,

10 water_requirements="high",
11 soil_preferences=[SoilType.ARGILEUX , SoilType.HUMIFERE],
12 suitable_regions=[RegionType.CENTRE, RegionType.SUD,
13 RegionType.LITTORAL , RegionType.SUD_OUEST],
14 planting_seasons=[SeasonType.SAISON_PLUIES],
15 expected_yield_per_hectare=600
16),
17 # ... autres cultures
18 }
19

20 # Prix moyens du marché validés (FCFA/kg)
21 MARKET_PRICES = {
22 CropType.CACAO: {"min": 1000, "max": 1500, "average": 1200},
23 CropType.CAFE: {"min": 1500, "max": 2500, "average": 2000},
24 CropType.MANIOC: {"min": 150, "max": 300, "average": 200},
25 # ... autres prix
26 }

5.3 Déploiement

5.3.1 Déploiement local

Le projet fournit des scripts de déploiement automatisé pour différentes plate-
formes.

Listing 5.7 – Script de déploiement local (setup.sh)
1 #!/bin/bash
2 # Script d'installation automatique pour Agriculture Cameroun
3

4 set -e
5

6 # Couleurs pour les messages
7 RED='\033[0;31m'
8 GREEN='\033[0;32m'
9 YELLOW='\033[1;33m'

10 BLUE='\033[0;34m'
11 NC='\033[0m' # No Color
12

13 # Vérifier l'OS
14 check_os() {
15 print_header "� Vérification du système d'exploitation..."

Mbassi Ewolo Loic Aron

84

16

17 if [["$OSTYPE" == "linux-gnu"*]]; then
18 OS="linux"
19 print_success "Linux détecté"
20 elif [["$OSTYPE" == "darwin"*]]; then
21 OS="macos"
22 print_success "macOS détecté"
23 else
24 print_error "Système d'exploitation non supporté: $OSTYPE"
25 exit 1
26 fi
27 }
28

29 # Vérifier Python
30 check_python() {
31 print_header "� Vérification de Python..."
32

33 if command -v python3.12 &> /dev/null; then
34 PYTHON_CMD="python3.12"
35 print_success "Python 3.12 trouvé"
36 elif command -v python3 &> /dev/null; then
37 # Vérifier la version
38 PYTHON_VERSION=$(python3 --version | cut -d' ' -f2)
39 print_success "Python $PYTHON_VERSION trouvé"
40 fi
41 }
42

43 # Installation du projet
44 install_project() {
45 print_header "� Installation du projet..."
46

47 # Clone ou mise à jour
48 if [-d "agriculture -cameroun"]; then
49 cd agriculture -cameroun
50 git pull origin main
51 else
52 git clone

https://github.com/Nameless0l/agriculture -cameroun.git
53 cd agriculture -cameroun
54 fi
55

56 # Installation des dépendances
57 poetry install --no-interaction --verbose
58 }

Mbassi Ewolo Loic Aron

85

5.3.2 Containerisation avec Docker

Le projet inclut une configuration Docker complète pour faciliter le déploiement.

Listing 5.8 – Dockerfile du projet
1 # Use Python 3.11 slim image for smaller size
2 FROM python:3.11-slim
3

4 # Set environment variables
5 ENV PYTHONUNBUFFERED=1 \
6 PYTHONDONTWRITEBYTECODE=1 \
7 PIP_NO_CACHE_DIR=1
8

9 # Set work directory
10 WORKDIR /app
11

12 # Install system dependencies
13 RUN apt-get update && apt-get install -y \
14 curl \
15 build-essential \
16 && rm -rf /var/lib/apt/lists/*
17

18 # Install Poetry
19 RUN pip install poetry
20

21 # Configure Poetry
22 ENV POETRY_VENV_IN_PROJECT=1 \
23 POETRY_CACHE_DIR=/tmp/poetry_cache
24

25 # Copy Poetry configuration files
26 COPY pyproject.toml poetry.lock* ./
27

28 # Install dependencies
29 RUN poetry install --only=main --no-root && rm -rf $POETRY_CACHE_DIR
30

31 # Copy application code
32 COPY agriculture_cameroun/ ./agriculture_cameroun/
33 COPY .env.example ./.env
34

35 # Create non-root user
36 RUN adduser --disabled -password --gecos '' appuser && \
37 chown -R appuser:appuser /app
38 USER appuser
39

40 # Expose port
41 EXPOSE 8000
42

43 # Default command

Mbassi Ewolo Loic Aron

86

44 CMD ["poetry", "run", "adk", "serve", ".", "--host", "0.0.0.0",
"--port", "8000"]

5.3.3 Déploiement en production avec Docker Compose

Le fichier docker-compose.yml fourni permet un déploiement complet avec tous
les services nécessaires.

Listing 5.9 – Configuration Docker Compose (docker-compose.yml)
1 version: '3.8'
2

3 services:
4 agriculture -cameroun:
5 build: .
6 ports:
7 - "8000:8000"
8 environment:
9 - LOG_LEVEL=INFO

10 - ENABLE_CACHING=true
11 - DATABASE_URL=sqlite:///./data/agriculture.db
12 env_file:
13 - .env
14 volumes:
15 - ./data:/app/data
16 - ./logs:/app/logs
17 restart: unless-stopped
18 depends_on:
19 - redis
20 networks:
21 - agriculture -network
22

23 redis:
24 image: redis:7-alpine
25 ports:
26 - "6379:6379"
27 volumes:
28 - redis-data:/data
29 restart: unless-stopped
30 networks:
31 - agriculture -network
32

33 nginx:
34 image: nginx:alpine
35 ports:
36 - "80:80"
37 - "443:443"
38 volumes:

Mbassi Ewolo Loic Aron

87

39 - ./nginx.conf:/etc/nginx/nginx.conf
40 - ./ssl:/etc/nginx/ssl
41 depends_on:
42 - agriculture -cameroun
43 restart: unless-stopped
44 networks:
45 - agriculture -network
46

47 volumes:
48 redis-data:
49

50 networks:
51 agriculture -network:
52 driver: bridge

Architecture de déploiement production

Composants déployés :

- Container principal Agriculture Cameroun (ADK)
- Cache Redis pour les performances
- Reverse proxy Nginx pour SSL/TLS

- Volumes persistants pour données et logs
- Réseau Docker isolé

Commandes de déploiement :

docker-compose up -d - Démarrer tous les services
docker-compose ps - Vérifier l’état

docker-compose logs -f - Suivre les logs
docker-compose down - Arrêter les services

FIGURE 5.2 – Stack de déploiement Docker Compose

Cette architecture garantit que le système Agriculture Cameroun peut être déployé
facilement tout en maintenant les performances et la fiabilité nécessaires pour servir
les agriculteurs camerounais.

Mbassi Ewolo Loic Aron

CONCLUSION

Récapitulatif des concepts clés

Au terme de ce tutoriel, nous avons exploré en profondeur l’implémentation d’un
système multi-agents moderne utilisant Google ADK pour répondre aux défis agri-
coles au Cameroun. Cette approche révolutionnaire démontre comment l’intelligence
artificielle distribuée peut transformer l’agriculture traditionnelle en agriculture intel-
ligente.

Sur le plan théorique, nous avons maîtrisé l’architecture des systèmes multi-agents
en comprenant les interactions complexes entre agents autonomes, réactifs et pro-actifs
évoluant dans un environnement partagé. La communication inter-agents s’est révé-
lée centrale, nécessitant une maîtrise approfondie des protocoles d’échange d’infor-
mations et des mécanismes de coordination sophistiqués. La spécialisation des agents
a permis de créer des experts virtuels dans des domaines spécifiques tels que la mé-
téorologie, les cultures, la santé des plantes, l’économie et la gestion des ressources.
L’intégration des modèles de langage de grande taille (LLM) a considérablement en-
richi les capacités de raisonnement et de communication naturelle des agents.

D’un point de vue technique, la maîtrise de Google ADK s’est avérée fondamentale,
depuis l’installation et la configuration jusqu’à l’utilisation avancée du framework. Le
développement d’agents spécialisés adaptés au contexte agricole camerounais a néces-
sité une compréhension fine des besoins locaux et des contraintes environnementales.
L’intégration d’APIs externes pour les données météorologiques et les marchés agri-
coles a ouvert de nouvelles possibilités d’analyse en temps réel. Le développement
d’interfaces utilisateur intuitives a permis de rendre cette technologie accessible aux
agriculteurs, quel que soit leur niveau technique. Enfin, les méthodologies de tests et
de déploiement ont garanti la fiabilité et la robustesse du système en conditions réelles.

L’impact du projet Agriculture Cameroun se manifeste à plusieurs niveaux trans-
formateurs. La démocratisation de l’expertise agricole permet désormais à tous les
producteurs, des petits exploitants aux grandes fermes, d’accéder à des connaissances
avancées traditionnellement réservées aux spécialistes. L’optimisation des ressources
se traduit par une utilisation plus efficace et durable de l’eau, des engrais et des pesti-
cides, réduisant ainsi les coûts et l’impact environnemental. La prévention des risques,
grâce à l’anticipation des maladies des plantes et des conditions météorologiques dé-
favorables, permet aux agriculteurs de prendre des décisions proactives plutôt que

88

89

réactives. L’analyse économique intégrée aide à maximiser la rentabilité des exploita-
tions en tenant compte des fluctuations du marché et des coûts de production.

Perspectives d’évolution

L’évolution du système Agriculture Cameroun s’inscrit dans une vision progres-
sive et ambitieuse, structurée autour de trois horizons temporels complémentaires.

À court terme, dans les six à douze prochains mois, nos efforts se concentreront sur
l’enrichissement substantiel de la base de connaissances par l’intégration de nouvelles
variétés de cultures spécifiquement adaptées aux différentes zones agro-écologiques
du Cameroun. L’amélioration de l’interface utilisateur constituera également une prio-
rité majeure, notamment par l’implémentation d’un support multilingue couvrant le
français, l’anglais et les principales langues locales pour garantir une accessibilité maxi-
male. L’optimisation des performances techniques sera poursuivie activement pour ré-
duire les temps de réponse et améliorer la scalabilité du système face à une adoption
croissante. L’intégration progressive de l’Internet des Objets (IoT) par la connexion
avec des capteurs terrain permettra l’acquisition de données en temps réel, enrichis-
sant considérablement la précision des analyses et recommandations.

Le développement à moyen terme, s’étalant sur une période de un à trois ans, mar-
quera une montée en sophistication technologique significative. L’intégration d’algo-
rithmes d’intelligence artificielle avancés, incluant des modèles de machine learning
spécialisés en agriculture, permettra des analyses prédictives plus fines et des recom-
mandations personnalisées. Le développement d’un système de recommandation in-
telligent adaptera automatiquement les conseils selon l’historique agricole et le profil
spécifique de chaque utilisateur. La création d’une plateforme collaborative transfor-
mera le système en véritable réseau social d’agriculteurs, facilitant le partage d’expé-
riences, de bonnes pratiques et de solutions innovantes entre pairs. Un module de for-
mation interactif sera développé pour créer un écosystème d’apprentissage continu,
combinant théorie agricole et pratiques adaptées au contexte local.

La vision à long terme, projetée sur trois à cinq ans, ambitionne une transforma-
tion radicale de l’agriculture dans la région. L’extension géographique du système vers
d’autres pays d’Afrique centrale créera un réseau d’intelligence agricole transnational,
favorisant les échanges de connaissances et l’harmonisation des pratiques. L’intégra-
tion de la technologie blockchain révolutionnera la traçabilité des produits agricoles,
garantissant l’authenticité et facilitant la certification biologique et équitable. Le dé-
veloppement de capacités de prédiction climatique avancée, basées sur des modèles
météorologiques sophistiqués, permettra aux agriculteurs de s’adapter proactivement
aux défis du changement climatique. Enfin, la création d’un écosystème agricole com-
plet intégrera harmonieusement les systèmes bancaires, d’assurance et de commerce,
offrant aux agriculteurs un environnement numérique unifié pour la gestion globale
de leur activité.

Mbassi Ewolo Loic Aron

90

Ressources pour approfondir

Pour poursuivre votre montée en compétence dans le domaine des systèmes multi-
agents et de l’intelligence artificielle appliquée à l’agriculture, plusieurs voies d’ap-
prentissage s’offrent à vous, chacune répondant à des besoins spécifiques de dévelop-
pement professionnel.

La formation continue constitue le socle fondamental de cette démarche d’appro-
fondissement. Les plateformes d’apprentissage en ligne proposent des cours de réfé-
rence, notamment le cours ”Multi-Agent Systems” de l’University of Edinburgh sur
Coursera, qui couvre les aspects théoriques avancés des SMA. Pour l’application spé-
cifique à l’agriculture, le cours ”Artificial Intelligence in Agriculture” de Wageningen
University sur edX offre une perspective complète sur l’intégration de l’IA dans les pra-
tiques agricoles modernes. Le programme ”AI for Trading” d’Udacity, bien qu’orienté
finance, fournit des concepts transposables à l’analyse des marchés agricoles et à la
prédiction des prix des commodités.

L’obtention de certifications professionnelles renforce significativement votre crédi-
bilité technique. La certification Google Cloud Professional Data Engineer valide votre
expertise dans la gestion de pipelines de données complexes, compétence essentielle
pour traiter les volumes importants d’informations agricoles. La certification AWS Cer-
tified Machine Learning - Specialty démontre votre maîtrise des outils d’apprentissage
automatique dans l’écosystème Amazon, particulièrement utile pour le déploiement
d’applications à grande échelle. La certification Microsoft Azure AI Engineer Associate
complète cette panoplie en couvrant les aspects d’intégration d’intelligence artificielle
dans des environnements d’entreprise.

L’engagement dans les communautés et événements professionnels enrichit consi-
dérablement votre réseau et vos connaissances. Les conférences internationales de ré-
férence incluent AAMAS (International Conference on Autonomous Agents and Mul-
tiagent Systems), qui présente les dernières avancées académiques et industrielles,
ICAART (International Conference on Agents and Artificial Intelligence) pour une
perspective plus large sur l’IA, et PRECISION AG (Precision Agriculture Conference)
pour les applications spécifiques au secteur agricole. Les communautés en ligne offrent
un accès quotidien à l’expertise collective : Stack Overflow avec ses tags spécialisés
multi-agent-systems et google-adk, les forums Reddit r/MachineLearning, r/artificial
et r/agriculture pour les discussions thématiques, et GitHub pour l’exploration de pro-
jets open-source en agriculture intelligente.

La veille technologique régulière vous permet de rester à la pointe des innovations.
Les blogs spécialisés constituent des sources d’information privilégiées : le Google
AI Blog (ai.googleblog.com) pour les dernières avancées de Google en IA, Towards
Data Science (towardsdatascience.com) pour des articles techniques approfondis, et
les sites d’innovations AgTech comme Precision Ag (www.precisionag.com) pour les
applications concrètes en agriculture. Les newsletters et podcasts complètent cette
veille : The Batch de deeplearning.ai pour une synthèse hebdomadaire des actuali-

Mbassi Ewolo Loic Aron

91

tés IA, AI in Agriculture Podcast pour les discussions sectorielles, et Future of Food
Podcast pour une vision prospective de l’agriculture de demain.

Mbassi Ewolo Loic Aron

RÉFÉRENCES

5.3.4 Documentation officielle

Google ADK et technologies associées

— Google. (2024). Agent Development Kit Documentation. https://google.github.
io/adk-docs/

— Google. (2024).Gemini AIModelDocumentation. https://ai.google.dev/gemini-api
— Google Cloud. (2024).VertexAIDocumentation. https://cloud.google.com/vertex-ai/

docs
— Python Software Foundation. (2024). Python 3.12 Documentation. https://docs.

python.org/3.12/
— Poetry. (2024).PoetryDependencyManagement. https://python-poetry.org/docs/

Standards et protocoles

— FIPA. (2002). FIPA Agent Communication Language Specifications. Foundation for
Intelligent Physical Agents

— W3C. (2024). SemanticWeb Standards. https://www.w3.org/standards/semanticweb/
— OGC. (2024).OpenGeospatial ConsortiumStandards. https://www.ogc.org/standards

5.3.5 Articles et publications

Systèmes multi-agents

— Wooldridge, M. (2009). An Introduction to MultiAgent Systems. 2nd Edition, John
Wiley & Sons

— Stone, P., & Veloso, M. (2000). ”Multiagent Systems : A Survey from a Machine
Learning Perspective”. Autonomous Robots, 8(3), 345-383

— Jennings, N. R. (2001). ”An agent-based approach for building complex software
systems”. Communications of the ACM, 44(4), 35-41

Intelligence artificielle en agriculture

— Liakos, K. G., et al. (2018). ”Machine learning in agriculture : A review”. Sensors,
18(8), 2674

92

https://google.github.io/adk-docs/
https://google.github.io/adk-docs/
https://ai.google.dev/gemini-api
https://cloud.google.com/vertex-ai/docs
https://cloud.google.com/vertex-ai/docs
https://docs.python.org/3.12/
https://docs.python.org/3.12/
https://python-poetry.org/docs/
https://www.w3.org/standards/semanticweb/
https://www.ogc.org/standards

93

— Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). ”Deep learning in agriculture : A
survey”. Computers and Electronics in Agriculture, 147, 70-90

— Wolfert, S., et al. (2017). ”Big data in smart farming–a review”. Agricultural sys-
tems, 153, 69-80

Agriculture africaine et technologie

— Aker, J. C. (2011). ”Dial ”A” for agriculture : a review of information and commu-
nication technologies for agricultural extension in developing countries”.Agricul-
tural economics, 42(6), 631-647

— Trendov, N. M., et al. (2019). Digital technologies in agriculture and rural areas. FAO
— Totin, E., et al. (2018). ”Institutional perspectives of climate-smart agriculture :

A systematic literature review”. Sustainability, 10(6), 1990

5.3.6 Ressources complémentaires

Bases de données et APIs

— OpenWeatherMap API : https://openweathermap.org/api
— NASA Earth Data : https://earthdata.nasa.gov/
— FAO GIEWS : http://www.fao.org/giews/en/
— World Bank Climate Data : https://climateknowledgeportal.worldbank.org/

Outils et frameworks complémentaires

— MESA : Agent-based modeling framework. https://mesa.readthedocs.io/
— NetLogo : Multi-agent programmable modeling environment. https://ccl.northwestern.

edu/netlogo/
— SUMO : Multi-agent traffic simulation. https://www.eclipse.org/sumo/
— Pandas : Data manipulation library. https://pandas.pydata.org/
— FastAPI : Modern web framework for APIs. https://fastapi.tiangolo.com/

Mbassi Ewolo Loic Aron

https://openweathermap.org/api
https://earthdata.nasa.gov/
http://www.fao.org/giews/en/
https://climateknowledgeportal.worldbank.org/
https://mesa.readthedocs.io/
https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/
https://www.eclipse.org/sumo/
https://pandas.pydata.org/
https://fastapi.tiangolo.com/

ANNEXE

5.4 Annexe A : Commandes utiles et dépannage

5.4.1 Installation et configuration

Installation de Python 3.12+
sudo apt update
sudo apt install python3.12 python3.12-pip

Vérification de la version
python3.12 --version

Installation de Poetry
curl -sSL https://install.python-poetry.org | python3 -

Configuration du projet
poetry new agriculture_cameroun
cd agriculture_cameroun
poetry add google-adk aiohttp fastapi uvicorn

Variables d'environnement
export GOOGLE_API_KEY="votre_clé_ici"
export OPENWEATHER_API_KEY="votre_clé_ici"

Lancement du système
poetry run python src/main.py

Tests
poetry run pytest tests/

Interface web
poetry run uvicorn src.api:app --reload --port 8000

94

95

5.4.2 Debugging et logs

Activation du mode debug
export DEBUG=True

Logs détaillés
export LOG_LEVEL=DEBUG

Monitoring des performances
poetry add psutil
python -c "
import psutil
print(f'CPU: {psutil.cpu_percent()}%')
print(f'RAM: {psutil.virtual_memory().percent}%')
"

Test de connectivité API
curl -X GET "http://api.openweathermap.org/data/2.5/weather?q=Yaoundé&appid=YOUR_KEY"

Validation du format JSON
python -m json.tool data/crops_cameroon.json

Profiling du code
poetry add py-spy
py-spy record -o profile.svg -- python src/main.py

5.4.3 Maintenance et mise à jour

Mise à jour des dépendances
poetry update

Sauvegarde de la base de données
cp -r data/ backup/data_$(date +%Y%m%d_%H%M%S)/

Nettoyage des logs
find logs/ -name "*.log" -mtime +30 -delete

Test de santé du système
poetry run python tests/health_check.py

Monitoring continu
watch -n 10 'curl -s http://localhost:8000/health | jq .'

Mbassi Ewolo Loic Aron

96

5.5 Annexe B : FAQ et problèmes courants

5.5.1 Questions fréquentes

Q1 : Comment ajouter un nouvel agent spécialisé?
R : Pour ajouter un nouvel agent, suivez ces étapes :

1. Créez une nouvelle classe héritant de Agent
2. Définissez les outils spécifiques avec le décorateur @tool
3. Ajoutez l’agent au dictionnaire sub_agents de l’agent principal
4. Mettez à jour la méthode _analyze_query avec les mots-clés appropriés
5. Ajoutez des tests unitaires dans tests/

Q2 : Comment intégrer une nouvelle API externe?
R : Créez un nouveau module dans src/tools/ avec :

— Une classe d’interface API
— Gestion des erreurs et retry logic
— Cache pour optimiser les performances
— Tests de l’intégration

Q3 : Comment personnaliser les recommandations par région?
R : Modifiez le fichier agriculture_cameroun/utils/data.py :

— Ajoutez des données spécifiques par région
— Adaptez les algorithmes de recommandation
— Mettez à jour la base de connaissances régionale

5.5.2 Problèmes courants et solutions

Erreur : ”API Key non valide”

— Vérifiez que les clés API sont correctement définies dans les variables d’environ-
nement

— Testez les clés avec un appel direct à l’API
— Régénérez les clés si nécessaire

Erreur : ”TimeoutError lors des appels API”

— Augmentez le timeout dans la configuration
— Implémentez un mécanisme de retry
— Utilisez un cache pour réduire les appels

Erreur : ”Module non trouvé”

— Vérifiez que Poetry est correctement installé
— Exécutez poetry install pour installer les dépendances
— Activez l’environnement virtuel avec poetry shell

Interface web ne se lance pas

— Vérifiez que le port 8000 n’est pas déjà utilisé

Mbassi Ewolo Loic Aron

97

— Contrôlez les logs pour identifier l’erreur
— Testez avec un port différent : --port 8001

5.5.3 Conseils de performance

— Cache intelligent : Implémentez un cache hiérarchique pour les données météo
et market

— Parallélisation : Utilisez asyncio.gather()pour les appels simultanés aux agents
— Pagination : Limitez le nombre de résultats retournés par les APIs
— Compression : Compressez les réponses HTTP avec gzip
— Monitoring : Utilisez des métriques pour identifier les goulots d’étranglement

5.5.4 Ressources de support

— Documentation officielle : https://github.com/Nameless0l/agriculture-cameroun/
— IssuesGitHub : https://github.com/Nameless0l/agriculture-cameroun/issues/

1

Mbassi Ewolo Loic Aron

https://github.com/Nameless0l/agriculture-cameroun/
https://github.com/Nameless0l/agriculture-cameroun/issues/1
https://github.com/Nameless0l/agriculture-cameroun/issues/1

	Table des matières
	Table des figures
	List of Listings
	Résumé
	Abstract
	Glossaire

	Introduction
	 CONCEPTS FONDAMENTAUX DES SYSTÈMES MULTI-AGENTS
	Introduction aux Systèmes Multi-Agents (SMA)
	Définition et caractéristiques d'un SMA
	Notion d'agent : autonomie, réactivité, pro-activité, socialité
	Architecture des SMA : agents, environnement, interactions
	Domaines d'application des SMA

	Communication entre Agents
	Langage de Communication entre Agents (ACL)
	Performatives FIPA-ACL (INFORM, REQUEST, QUERY, PROPOSE, etc.)
	Protocoles d'interaction
	Ontologies et représentation des connaissances

	Présentation de Google ADK (Agent Development Kit)
	Qu'est-ce que Google ADK ?
	Architecture et composants principaux
	Modèles d'agents dans ADK
	Intégration avec les LLM Exemple: Gemini

	Étude Comparative : Google ADK vs JADE
	Tableau comparatif des caractéristiques
	Avantages et inconvénients de chaque framework
	Cas d'usage appropriés
	Migration de concepts JADE vers ADK

	PRÉSENTATION DU PROJET AGRICULTURE CAMEROUN
	Description du Système
	Contexte et problématique
	Objectifs du système multi-agents
	Bénéficiaires et impact attendu

	Architecture du Système
	Vue d'ensemble de l'architecture
	Les 5 agents spécialisés
	Agent coordinateur principal
	Diagramme d'architecture

	Scénarios d'Interaction
	Cas d'usage : Consultation météorologique
	Cas d'usage : Diagnostic de maladie
	Cas d'usage : Analyse économique
	Diagrammes de séquence annotés

	ENVIRONNEMENT DE DÉVELOPPEMENT
	Prérequis Système
	Configuration matérielle requise
	Systèmes d'exploitation supportés
	Versions Python et dépendances

	Installation de l'Environnement
	Installation de Python 3.12+
	Installation de Poetry
	Installation de Git
	Configuration des clés API (Google Gemini)

	Structure du Projet
	Organisation des dossiers
	Fichiers de configuration importants
	Conventions de nommage et bonnes pratiques

	IMPLÉMENTATION AVEC GOOGLE ADK
	Concepts de Base ADK
	Création d'un agent simple
	Cycle de vie d'un agent ADK
	Gestion des comportements
	Système de prompts et instructions

	Communication Inter-Agents
	Mécanisme de communication dans ADK
	Implémentation des outils (tools)
	Passage de contexte entre agents

	Implémentation de l'Agent Principal
	Structure du fichier agent.py
	Configuration et initialisation
	Routage vers les sous-agents

	Implémentation des Agents Spécialisés
	Agent Météorologique
	Agent Cultures
	Agent Santé des Plantes
	Agent Économique
	Agent Ressources

	INTÉGRATION ET DÉPLOIEMENT
	Interface Utilisateur
	Interface web avec ADK
	API REST pour intégrations externes
	Exemples d'utilisation

	Tests et Validation
	Tests unitaires des agents
	Tests d'intégration
	Validation des données agricoles

	Déploiement
	Déploiement local
	Containerisation avec Docker
	Déploiement en production avec Docker Compose

	Conclusion
	RÉFÉRENCES
	Documentation officielle
	Articles et publications
	Ressources complémentaires

	Annexe
	Annexe A : Commandes utiles et dépannage
	Installation et configuration
	Debugging et logs
	Maintenance et mise à jour

	Annexe B : FAQ et problèmes courants
	Questions fréquentes
	Problèmes courants et solutions
	Conseils de performance
	Ressources de support

