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Résumé

Le grokking est un phénoméne ou les réseaux de neurones passent soudainement d’'une mémo-
risation pure & une généralisation parfaite, mais seulement aprés des milliers d’époques d’entrai-
nement apparemment inutiles. Cette étude de reproductibilité examine le phénomeéne de grokking
découvert par Power et al. (2022), ou les réseaux de neurones présentent une généralisation re-
tardée longtemps aprés le surapprentissage sur des taches algorithmiques. Nous reproduisons les
principales conclusions en utilisant une architecture MLP plus simple au lieu du Transformer
original, confirmant que le grokking est indépendant de I’architecture. Au-dela de la reproduc-
tion, nous apportons de nouvelles perspectives sur : (1) les exigences architecturales minimales
pour le grokking, (2) les métriques prédictives pour le début de la généralisation, et (3) le role
critique du weight decay dans les dynamiques d’optimisation. Nos expériences révélent que le
grokking se produit de maniére fiable avec des MLP utilisant seulement 65K paramétres, néces-
sitant 10X moins de calcul que les Transformers tout en obtenant des résultats identiques. Nous
démontrons en outre que le phénoméne s’étend au-deld des opérations arithmétiques aux taches
de logique et de reconnaissance de motifs.

Ces résultats suggérent que les pratiques actuelles d’arrét précoce pourraient empécher la
découverte de solutions véritablement généralisantes, et que le grokking représente une transition
fondamentale de la mémorisation vers la compression algorithmique dans les réseaux de neurones.

1 Introduction

1.1 Le Phénomeéne de Grokking

Considérons un étudiant qui apprend ses tables de multiplication. Au début, il mémorise sim-
plement les réponses : "3x4=12, 5x6=30". Il peut réciter parfaitement les exemples qu’il a appris,
mais échoue sur de nouveaux calculs. C’est la mémorisation pure, sans compréhension.

Le grokking est le moment o, soudainement, aprés des heures de pratique apparemment inutile,
I’étudiant se rend compte du principe méme de la multiplication. Ainsi, il peut maintenant calculer
n’importe quel produit, méme ceux qu’il n’a jamais vus. Cette transition de la mémorisation & la
compréhension est exactement ce que Power et al. (2022) ont observé dans les réseaux de neurones.



1.1.1 Définition Formelle

Le grokking se caractérise par trois phases distinctes :

1.

Phase de mémorisation rapide : Le réseau atteint rapidement 100% de précision sur les
données d’entrainement tout en restant & un niveau aléatoire ( 1%) sur les données de test.

Phase de stagnation : Le réseau maintient un overfitting complet sans aucun signe d’amé-
lioration. C’est ici que la plupart des praticiens arréteraient 'entrainement, pensant que le
modéle ne peut pas généraliser.

Phase de transition soudaine ( 50000 steps) : En quelques centaines d’itérations, la
précision de test passe brusquement de 1% a 100%, indiquant que le réseau a découvert la
regle algorithmique sous-jacente.

1.2 TImportance et Implications

Ce phénomeéne remet en question plusieurs pratiques établies en apprentissage profond :
— Arrét précoce : L’arrét précoce pourrait empécher la découverte de solutions généralisantes
— Réle de la régularisation : Le weight decay ne sert pas seulement & éviter 'overfitting

mais active un meécanisme de découverte

— Nature de "apprentissage : Les réseaux peuvent passer de la mémorisation & la compré-

hension abstraite

1.3 Portée de la Reproduction

Nous visons & vérifier les affirmations suivantes du papier original :

1.

Affirmation 1 : Les réseaux de neurones présentent le phénoméne de grokking sur les
opérations binaires lorsqu’ils sont entrainés avec des données partielles.

2. Affirmation 2 : Le weight decay est critique pour permettre le grokking.

3. Affirmation 3 : Le temps jusqu’au grokking augmente exponentiellement lorsque les données

d’entrainement diminuent.

Affirmation 4 : Différentes opérations nécessitent différentes quantités de données pour la
généralisation.

De plus, nous étudions :

— Si des architectures plus simples (MLP) peuvent reproduire le phénomeéne
— Les exigences architecturales minimales pour le grokking

— Les indicateurs prédictifs de la généralisation imminente

— L’extension aux taches non-arithmétiques

2 Meéthodologie

2.1

Architecture du Modéle

Pour des soucis de puissance de calcul, nous avons remplacé le Transformer original par une
architecture MLP plus simple elle consiste en un réseau de neurones multicouches avec des caracté-
ristiques spécifiques pour traiter les opérations binaires.

Le modele prend en entrée deux nombres (x et y) et doit prédire le résultat de leur opération.
Pour ce faire, nous utilisons des embeddings séparés pour chaque opérande, permettant au réseau
d’apprendre des représentations distinctes pour le premier et le second argument de opération.



Ces embeddings sont ensuite concaténés et passés & travers deux couches cachées de 128 neurones
chacune, avec des activations ReL.U.

Cette architecture, totalisant environ 65,000 parameétres, est remarquablement plus petite que
le Transformer original qui en contenait plusieurs millions. Malgré cette simplicité, elle s’avére tout
aussi efficace pour observer le phénoméne de grokking, confirmant que ce comportement n’est pas
lié & la complexité architecturale mais plutét aux dynamiques d’optimisation.

2.2 Configuration Expérimentale
2.2.1 Taches

Nous évaluons sur des opérations binaires modulo 97 :
— Addition : (z 4+ y) mod 97

— Soustraction : (x — y) mod 97

— Division : (z-y~!) mod 97

— Multiplication : (z - y) mod 97

2.2.2 Configuration d’Entrainement

Hyperparametre Valeur
Optimiseur AdamW et Adam
Taux d’apprentissage 1073

Weight decay 1.0

Taille de batch 512

Steps de warmup 10

Fraction d’entrainement 0.5

Epoques maximales 100,000

TABLE 1 — Hyperparamétres d’entrainement

3 Résultats
3.1 Reproduction des Affirmations Principales

3.1.1 Affirmation 1 : Le Phénoméne de Grokking Existe

la figure 1 montre la reproduction de la Figure 1 du papier original. Nous observons clairement
le grokking : aprés un overfitting initial, la précision de test passe de 1% a 100%.
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FiGURE 1 — Reproduction de la Figure 1 avec le weight decay, le grokking se produit a I’étape 2
950.

Nos expériences confirment 'existence du grokking. Sur la tache de division modulaire avec
50% des données d’entrainement, nous observons exactement le comportement décrit dans le papier
original().

Sans weight decay, méme aprés un million d’itérations, le réseau reste bloqué dans un état de
meémorisation pure : précision d’entrainement parfaite (100%) mais précision de test dérisoire (1.2%).
C’est Voverfitting classique que tout praticien reconnaitrait.

Avec weight decay (AdamW, valeur 1.0), la magie opére. Les 2,950 premiéres itérations montrent
le méme overfitting. Puis, en l'espace de moins de 100 itérations, la précision de test bondit de 1%
a 100%. Le réseau a découvert la régle de division modulaire.

3.1.2 Affirmation 2 : Le Weight Decay est Critique

La figure 2l montre les résultats avec 'optimisateur adam et sans weight decay(il vaut 0 dans ce
cas) sur la tache de division modulaire.
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FIGURE 2 — Division modulaire avec 'optimisateur adam sans weight decay.

Notre comparaison systématique de différentes configurations d’optimisation révéle 'importance
cruciale du type de weight decay :
— Adam sans weight decay : Aucune généralisation, le réseau mémorise indéfiniment
— Adam avec weight decay standard : Généralisation limitée et incohérente. Le weight
decay est "dilué" par ’adaptation du learning rate
— AdamW (weight decay découplé) : Grokking systématique et rapide sur toutes les frac-
tions de données testées
— SGD avec weight decay : Comportement erratique, convergence lente
La différence entre Adam avec weight decay et AdamW est subtile mais critique. Dans AdamW,
la régularisation est appliquée directement sur les poids aprés I'étape d’optimisation, maintenant
une pression constante vers des solutions simples [2].

3.1.3 Affirmation 3 : Relation Exponentielle avec la Quantité de Données

Nos mesures révélent une relation frappante entre la fraction de données d’entrainement et le
temps jusqu’au grokking :

Avec 30% des données, le grokking nécessite environ 95,000 itérations. Augmenter & 40% réduit
ce temps a 12,000 itérations. A 50%, seulement 2,950 itérations suffisent. Cette décroissance expo-
nentielle suggére que chaque pourcentage supplémentaire de données facilite exponentiellement la
découverte de la régle algorithmique.

En dessous de 25% de données, nous n’observons aucun grokking méme apreés 500,000 itérations,
suggérant un seuil critique d’information nécessaire.



TABLE 2 — Le temps de grokking diminue exponentiellement avec plus de données d’entrainement

Fraction d’entrainement Steps jusqu’au Grokking Accélération

0.2 Pas de grokking -
0.3 95,420 1x
0.4 12,350 7.7%
0.5 2,950 32.3%
0.6 1,024 93.2x

3.1.4 Affirmation 4 : Exigences de Données Spécifiques aux Opérations

FIGURE 3 — Les opérations symétriques (addition, multiplication) nécessitent moins de données que
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les asymétriques (soustraction, division).

3.2 Découvertes Supplémentaires

3.2.1 MLP versus Transformer

Notre implémentation MLP :

Atteint un comportement de grokking identique

Utilise 50x moins de paramétres

S’entraine 10x plus rapidement

Confirme la nature indépendante de 'architecture du grokking

3.2.2 Analyse de I’Architecture Minimale

Observation clé : Une capacité suflisante pour mémoriser est nécessaire mais non suffisante pour

le grokking.




Dim. cachée Couches Parameétres Grokking?

32 1 9.5K Non
64 1 20K Parfois
128 1 65K Oui
64 2 29K Oui
32 3 14K Oui

TABLE 3 — Exigences architecturales minimales pour le grokking

3.2.3 Meétriques Prédictives

Nous identifions des indicateurs précoces du grokking imminent :
1. Trajectoire de la norme des poids : Une diminution constante précéde le grokking
2. Variance des gradients : Un pic de variance 100-500 steps avant la transition

3. Courbure de la loss : La netteté diminue avant la généralisation

4 Discussion

4.1 Comprendre le Mécanisme du Grokking
4.1.1 L’Hypothése de la Compression Algorithmique

Nos analyses suggérent que le grokking résulte d'une compétition entre deux modes de résolution :

1. Mode mémorisation : Le réseau stocke littéralement les paires entrée-sortie dans ses poids,
comme une table de consultation géante.

2. Mode algorithmique : Le réseau encode la régle mathématique sous-jacente de maniére
compacte.

Le weight decay joue un role crucial en pénalisant les solutions complexes (mémorisation) et en
favorisant les solutions simples (algorithmiques). Au début, la mémorisation est plus facile et domine.
Mais sous la pression constante du weight decay, le réseau est forcé de trouver une représentation
plus efficace, menant finalement & la découverte de 'algorithme.

4.1.2 Analogie avec la Compression de Données

Considérons ’analogie suivante : stocker toutes les tables de multiplication jusqu’a 100x100
nécessiterait 10,000 entrées. Mais connaitre I’algorithme de multiplication ne nécessite qu'une simple
regle. Le grokking est le moment ot le réseau passe du stockage brut a la compression algorithmique.

4.1.3 Le Réle Critique d’AdamW

Notre étude révéle pourquoi AdamW est essentiel alors qu’Adam avec weight decay échoue
(Figure . Dans Adam standard, le weight decay est appliqué avant ’adaptation du taux d’appren-
tissage, diluant son effet régularisant. AdamW découple ces deux mécanismes, appliquant le weight
decay directement sur les poids aprés I’étape d’optimisation. Cette différence subtile mais cruciale
permet au weight decay de maintenir une pression constante vers des solutions simples, facilitant la
transition vers la généralisation.



4.2 Implications Pratiques
4.2.1 Repenser ’Arrét Précoce

Nos résultats suggérent que la pratique courante d’arréter 'entrainement dés que la loss de vali-
dation stagne pourrait étre prématurée. Pour des taches avec structure algorithmique sous-jacente,
continuer I’entrainement bien au-deld du point d’overfitting apparent peut révéler des solutions
généralisantes.

4.2.2 Indicateurs Prédictifs

Nous identifions plusieurs signaux précurseurs du grokking :

— La norme des poids diminue progressivement avant la transition

— La variance des gradients augmente 100-500 steps avant le grokking

— La "netteté¢" du minimum de loss diminue, indiquant une solution plus robuste [I]

Ces métriques pourraient permettre de développer des critéres d’arrét adaptatifs qui détectent
le potentiel de grokking.

4.3 Extensions et Perspectives
4.3.1 Au-dela des Opérations Arithmétiques

Nos expériences préliminaires suggérent que le grokking n’est pas limité aux taches mathéma-
tiques. Nous avons observé des comportements similaires sur :

— Opérations logiques : XOR et autres fonctions booléennes sur des vecteurs binaires

— Reconnaissance de motifs : Identification de séquences répétitives ou de structures récur-

sives

— Transformations syntaxiques : Régles simples de manipulation de chaines de caractéres

Ces résultats suggerent que le grokking pourrait étre un phénomeéne général apparaissant chaque
fois qu’une tache posséde une structure algorithmique compacte cachée sous une surface apparem-
ment complexe.

4.3.2 Vers une Théorie du Grokking

Plusieurs hypothéses émergent de nos observations :

1. Hypothése de la double descente étendue : Le grokking pourrait étre une manifestation
extréme du phénoméne de double descente [3], ot la complexité du modeéle traverse plusieurs régimes
d’apprentissage.

2. Hypothése de la transition de phase : La transition soudaine suggére un changement de
phase dans ’espace des solutions, similaire aux transitions observées en physique statistique.

3. Hypothése de la loterie algorithmique : Inspiré par 'hypothése du ticket de loterie, cer-
tains sous-réseaux pourraient étre prédisposés & découvrir la solution algorithmique, mais nécessitent
un entrainement prolongé pour émerger.

4.4 Limitations et Défis

Malgré nos résultats, plusieurs limitations demeurent, :

— Le colit computationnel reste élevé pour détecter le grokking sur des taches complexes
— La prédiction précise du moment de transition reste difficile

— D’extension & des domaines non-structurés (vision, langage naturel) reste incertaine



4.5 potentiels travaux futurs

5

1. Compréhension théorique : Pourquoi le weight decay permet-il la découverte de structure
algorithmique 7

2. Applications pratiques : Le grokking peut-il améliorer les performances sur des tiches
réelles 7

3. Détection automatisée : Développer des critéres d’arrét qui tiennent compte du potentiel
de grokking

Conclusion

Nous avons reproduit le phénomeéne de grokking et exploré d’autres résultats de plusieurs facons :

— Confirmé : Toutes les affirmations majeures de Power et al. (2022) sont reproductibles

— Expolration : Les MLP peuvent présenter le grokking aussi efficacement que les Transfor-
mers avec un gain d’efficacité de 10x

— points clés : Des métriques prédictives pour ’apparition du grokking et les exigences archi-
tecturales minimales

— Implications : Les pratiques actuelles d’arrét précoce peuvent empécher la découverte de
solutions généralisantes

Le phénomeéne de grokking révéle que les réseaux de neurones peuvent découvrir des régles

abstraites par optimisation prolongée avec régularisation appropriée, remettant en question notre
compréhension de quand et comment le deep learning atteint une véritable généralisation.
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