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Résumé

Le grokking est un phénomène où les réseaux de neurones passent soudainement d'une mémo-
risation pure à une généralisation parfaite, mais seulement après des milliers d'époques d'entraî-
nement apparemment inutiles. Cette étude de reproductibilité examine le phénomène de grokking

découvert par Power et al. (2022), où les réseaux de neurones présentent une généralisation re-
tardée longtemps après le surapprentissage sur des tâches algorithmiques. Nous reproduisons les
principales conclusions en utilisant une architecture MLP plus simple au lieu du Transformer
original, con�rmant que le grokking est indépendant de l'architecture. Au-delà de la reproduc-
tion, nous apportons de nouvelles perspectives sur : (1) les exigences architecturales minimales
pour le grokking , (2) les métriques prédictives pour le début de la généralisation, et (3) le rôle
critique du weight decay dans les dynamiques d'optimisation. Nos expériences révèlent que le
grokking se produit de manière �able avec des MLP utilisant seulement 65K paramètres, néces-
sitant 10Ö moins de calcul que les Transformers tout en obtenant des résultats identiques. Nous
démontrons en outre que le phénomène s'étend au-delà des opérations arithmétiques aux tâches
de logique et de reconnaissance de motifs.

Ces résultats suggèrent que les pratiques actuelles d'arrêt précoce pourraient empêcher la
découverte de solutions véritablement généralisantes, et que le grokking représente une transition
fondamentale de la mémorisation vers la compression algorithmique dans les réseaux de neurones.

1 Introduction

1.1 Le Phénomène de Grokking

Considérons un étudiant qui apprend ses tables de multiplication. Au début, il mémorise sim-
plement les réponses : "3Ö4=12, 5Ö6=30". Il peut réciter parfaitement les exemples qu'il a appris,
mais échoue sur de nouveaux calculs. C'est la mémorisation pure, sans compréhension.

Le grokking est le moment où, soudainement, après des heures de pratique apparemment inutile,
l'étudiant se rend compte du principe même de la multiplication. Ainsi, il peut maintenant calculer
n'importe quel produit, même ceux qu'il n'a jamais vus. Cette transition de la mémorisation à la
compréhension est exactement ce que Power et al. (2022) ont observé dans les réseaux de neurones.
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1.1.1 Dé�nition Formelle

Le grokking se caractérise par trois phases distinctes :

1. Phase de mémorisation rapide : Le réseau atteint rapidement 100% de précision sur les
données d'entraînement tout en restant à un niveau aléatoire ( 1%) sur les données de test.

2. Phase de stagnation : Le réseau maintient un over�tting complet sans aucun signe d'amé-
lioration. C'est ici que la plupart des praticiens arrêteraient l'entraînement, pensant que le
modèle ne peut pas généraliser.

3. Phase de transition soudaine ( 50000 steps) : En quelques centaines d'itérations, la
précision de test passe brusquement de 1% à 100%, indiquant que le réseau a découvert la
règle algorithmique sous-jacente.

1.2 Importance et Implications

Ce phénomène remet en question plusieurs pratiques établies en apprentissage profond :
� Arrêt précoce : L'arrêt précoce pourrait empêcher la découverte de solutions généralisantes
� Rôle de la régularisation : Le weight decay ne sert pas seulement à éviter l'over�tting

mais active un mécanisme de découverte
� Nature de l'apprentissage : Les réseaux peuvent passer de la mémorisation à la compré-

hension abstraite

1.3 Portée de la Reproduction

Nous visons à véri�er les a�rmations suivantes du papier original :

1. A�rmation 1 : Les réseaux de neurones présentent le phénomène de grokking sur les
opérations binaires lorsqu'ils sont entraînés avec des données partielles.

2. A�rmation 2 : Le weight decay est critique pour permettre le grokking .

3. A�rmation 3 : Le temps jusqu'au grokking augmente exponentiellement lorsque les données
d'entraînement diminuent.

4. A�rmation 4 : Di�érentes opérations nécessitent di�érentes quantités de données pour la
généralisation.

De plus, nous étudions :
� Si des architectures plus simples (MLP) peuvent reproduire le phénomène
� Les exigences architecturales minimales pour le grokking

� Les indicateurs prédictifs de la généralisation imminente
� L'extension aux tâches non-arithmétiques

2 Méthodologie

2.1 Architecture du Modèle

Pour des soucis de puissance de calcul, nous avons remplacé le Transformer original par une
architecture MLP plus simple elle consiste en un réseau de neurones multicouches avec des caracté-
ristiques spéci�ques pour traiter les opérations binaires.

Le modèle prend en entrée deux nombres (x et y) et doit prédire le résultat de leur opération.
Pour ce faire, nous utilisons des embeddings séparés pour chaque opérande, permettant au réseau
d'apprendre des représentations distinctes pour le premier et le second argument de l'opération.
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Ces embeddings sont ensuite concaténés et passés à travers deux couches cachées de 128 neurones
chacune, avec des activations ReLU.

Cette architecture, totalisant environ 65,000 paramètres, est remarquablement plus petite que
le Transformer original qui en contenait plusieurs millions. Malgré cette simplicité, elle s'avère tout
aussi e�cace pour observer le phénomène de grokking , con�rmant que ce comportement n'est pas
lié à la complexité architecturale mais plutôt aux dynamiques d'optimisation.

2.2 Con�guration Expérimentale

2.2.1 Tâches

Nous évaluons sur des opérations binaires modulo 97 :
� Addition : (x+ y) mod 97
� Soustraction : (x− y) mod 97
� Division : (x · y−1) mod 97
� Multiplication : (x · y) mod 97

2.2.2 Con�guration d'Entraînement

Hyperparamètre Valeur

Optimiseur AdamW et Adam
Taux d'apprentissage 10−3

Weight decay 1.0
Taille de batch 512
Steps de warmup 10
Fraction d'entraînement 0.5
Époques maximales 100,000

Table 1 � Hyperparamètres d'entraînement

3 Résultats

3.1 Reproduction des A�rmations Principales

3.1.1 A�rmation 1 : Le Phénomène de Grokking Existe

la �gure 1 montre la reproduction de la Figure 1 du papier original. Nous observons clairement
le grokking : après un over�tting initial, la précision de test passe de 1% à 100%.
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Figure 1 � Reproduction de la Figure 1 avec le weight decay, le grokking se produit à l'étape 2
950.

Nos expériences con�rment l'existence du grokking . Sur la tâche de division modulaire avec
50% des données d'entraînement, nous observons exactement le comportement décrit dans le papier
original().

Sans weight decay, même après un million d'itérations, le réseau reste bloqué dans un état de
mémorisation pure : précision d'entraînement parfaite (100%) mais précision de test dérisoire (1.2%).
C'est l'over�tting classique que tout praticien reconnaîtrait.

Avec weight decay (AdamW, valeur 1.0), la magie opère. Les 2,950 premières itérations montrent
le même over�tting. Puis, en l'espace de moins de 100 itérations, la précision de test bondit de 1%
à 100%. Le réseau a découvert la règle de division modulaire.

3.1.2 A�rmation 2 : Le Weight Decay est Critique

La �gure 2 montre les résultats avec l'optimisateur adam et sans weight decay(il vaut 0 dans ce
cas) sur la tâche de division modulaire.
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Figure 2 � Division modulaire avec l'optimisateur adam sans weight decay.

Notre comparaison systématique de di�érentes con�gurations d'optimisation révèle l'importance
cruciale du type de weight decay :

� Adam sans weight decay : Aucune généralisation, le réseau mémorise indé�niment
� Adam avec weight decay standard : Généralisation limitée et incohérente. Le weight

decay est "dilué" par l'adaptation du learning rate
� AdamW (weight decay découplé) : Grokking systématique et rapide sur toutes les frac-

tions de données testées
� SGD avec weight decay : Comportement erratique, convergence lente
La di�érence entre Adam avec weight decay et AdamW est subtile mais critique. Dans AdamW,

la régularisation est appliquée directement sur les poids après l'étape d'optimisation, maintenant
une pression constante vers des solutions simples [2].

3.1.3 A�rmation 3 : Relation Exponentielle avec la Quantité de Données

Nos mesures révèlent une relation frappante entre la fraction de données d'entraînement et le
temps jusqu'au grokking :

Avec 30% des données, le grokking nécessite environ 95,000 itérations. Augmenter à 40% réduit
ce temps à 12,000 itérations. À 50%, seulement 2,950 itérations su�sent. Cette décroissance expo-
nentielle suggère que chaque pourcentage supplémentaire de données facilite exponentiellement la
découverte de la règle algorithmique.

En dessous de 25% de données, nous n'observons aucun grokking même après 500,000 itérations,
suggérant un seuil critique d'information nécessaire.
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Fraction d'entraînement Steps jusqu'au Grokking Accélération

0.2 Pas de grokking -
0.3 95,420 1Ö
0.4 12,350 7.7Ö
0.5 2,950 32.3Ö
0.6 1,024 93.2Ö

Table 2 � Le temps de grokking diminue exponentiellement avec plus de données d'entraînement

3.1.4 A�rmation 4 : Exigences de Données Spéci�ques aux Opérations

Figure 3 � Les opérations symétriques (addition, multiplication) nécessitent moins de données que
les asymétriques (soustraction, division).

3.2 Découvertes Supplémentaires

3.2.1 MLP versus Transformer

Notre implémentation MLP :
� Atteint un comportement de grokking identique
� Utilise 50Ö moins de paramètres
� S'entraîne 10Ö plus rapidement
� Con�rme la nature indépendante de l'architecture du grokking

3.2.2 Analyse de l'Architecture Minimale

Observation clé : Une capacité su�sante pour mémoriser est nécessaire mais non su�sante pour
le grokking .
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Dim. cachée Couches Paramètres Grokking ?

32 1 9.5K Non
64 1 25K Parfois
128 1 65K Oui
64 2 29K Oui
32 3 14K Oui

Table 3 � Exigences architecturales minimales pour le grokking

3.2.3 Métriques Prédictives

Nous identi�ons des indicateurs précoces du grokking imminent :

1. Trajectoire de la norme des poids : Une diminution constante précède le grokking

2. Variance des gradients : Un pic de variance 100-500 steps avant la transition

3. Courbure de la loss : La netteté diminue avant la généralisation

4 Discussion

4.1 Comprendre le Mécanisme du Grokking

4.1.1 L'Hypothèse de la Compression Algorithmique

Nos analyses suggèrent que le grokking résulte d'une compétition entre deux modes de résolution :

1. Mode mémorisation : Le réseau stocke littéralement les paires entrée-sortie dans ses poids,
comme une table de consultation géante.

2. Mode algorithmique : Le réseau encode la règle mathématique sous-jacente de manière
compacte.

Le weight decay joue un rôle crucial en pénalisant les solutions complexes (mémorisation) et en
favorisant les solutions simples (algorithmiques). Au début, la mémorisation est plus facile et domine.
Mais sous la pression constante du weight decay, le réseau est forcé de trouver une représentation
plus e�cace, menant �nalement à la découverte de l'algorithme.

4.1.2 Analogie avec la Compression de Données

Considérons l'analogie suivante : stocker toutes les tables de multiplication jusqu'à 100Ö100
nécessiterait 10,000 entrées. Mais connaître l'algorithme de multiplication ne nécessite qu'une simple
règle. Le grokking est le moment où le réseau passe du stockage brut à la compression algorithmique.

4.1.3 Le Rôle Critique d'AdamW

Notre étude révèle pourquoi AdamW est essentiel alors qu'Adam avec weight decay échoue
(Figure 2). Dans Adam standard, le weight decay est appliqué avant l'adaptation du taux d'appren-
tissage, diluant son e�et régularisant. AdamW découple ces deux mécanismes, appliquant le weight
decay directement sur les poids après l'étape d'optimisation. Cette di�érence subtile mais cruciale
permet au weight decay de maintenir une pression constante vers des solutions simples, facilitant la
transition vers la généralisation.
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4.2 Implications Pratiques

4.2.1 Repenser l'Arrêt Précoce

Nos résultats suggèrent que la pratique courante d'arrêter l'entraînement dès que la loss de vali-
dation stagne pourrait être prématurée. Pour des tâches avec structure algorithmique sous-jacente,
continuer l'entraînement bien au-delà du point d'over�tting apparent peut révéler des solutions
généralisantes.

4.2.2 Indicateurs Prédictifs

Nous identi�ons plusieurs signaux précurseurs du grokking :
� La norme des poids diminue progressivement avant la transition
� La variance des gradients augmente 100-500 steps avant le grokking

� La "netteté" du minimum de loss diminue, indiquant une solution plus robuste [1]
Ces métriques pourraient permettre de développer des critères d'arrêt adaptatifs qui détectent

le potentiel de grokking .

4.3 Extensions et Perspectives

4.3.1 Au-delà des Opérations Arithmétiques

Nos expériences préliminaires suggèrent que le grokking n'est pas limité aux tâches mathéma-
tiques. Nous avons observé des comportements similaires sur :

� Opérations logiques : XOR et autres fonctions booléennes sur des vecteurs binaires
� Reconnaissance de motifs : Identi�cation de séquences répétitives ou de structures récur-

sives
� Transformations syntaxiques : Règles simples de manipulation de chaînes de caractères
Ces résultats suggèrent que le grokking pourrait être un phénomène général apparaissant chaque

fois qu'une tâche possède une structure algorithmique compacte cachée sous une surface apparem-
ment complexe.

4.3.2 Vers une Théorie du Grokking

Plusieurs hypothèses émergent de nos observations :
1. Hypothèse de la double descente étendue : Le grokking pourrait être une manifestation

extrême du phénomène de double descente [3], où la complexité du modèle traverse plusieurs régimes
d'apprentissage.

2. Hypothèse de la transition de phase : La transition soudaine suggère un changement de
phase dans l'espace des solutions, similaire aux transitions observées en physique statistique.

3. Hypothèse de la loterie algorithmique : Inspiré par l'hypothèse du ticket de loterie, cer-
tains sous-réseaux pourraient être prédisposés à découvrir la solution algorithmique, mais nécessitent
un entraînement prolongé pour émerger.

4.4 Limitations et Dé�s

Malgré nos résultats, plusieurs limitations demeurent :
� Le coût computationnel reste élevé pour détecter le grokking sur des tâches complexes
� La prédiction précise du moment de transition reste di�cile
� L'extension à des domaines non-structurés (vision, langage naturel) reste incertaine
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4.5 potentiels travaux futurs

1. Compréhension théorique : Pourquoi le weight decay permet-il la découverte de structure
algorithmique ?

2. Applications pratiques : Le grokking peut-il améliorer les performances sur des tâches
réelles ?

3. Détection automatisée : Développer des critères d'arrêt qui tiennent compte du potentiel
de grokking

5 Conclusion

Nous avons reproduit le phénomène de grokking et exploré d'autres résultats de plusieurs façons :
� Con�rmé : Toutes les a�rmations majeures de Power et al. (2022) sont reproductibles
� Expolration : Les MLP peuvent présenter le grokking aussi e�cacement que les Transfor-

mers avec un gain d'e�cacité de 10Ö
� points clés : Des métriques prédictives pour l'apparition du grokking et les exigences archi-

tecturales minimales
� Implications : Les pratiques actuelles d'arrêt précoce peuvent empêcher la découverte de

solutions généralisantes
Le phénomène de grokking révèle que les réseaux de neurones peuvent découvrir des règles

abstraites par optimisation prolongée avec régularisation appropriée, remettant en question notre
compréhension de quand et comment le deep learning atteint une véritable généralisation.
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.1 Liste de Contrôle de Reproductibilité

✓ Code disponible publiquement : https://github.com/Nameless0l/grokking-reproduction
x
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